动手学深度学习(Pytorch版)代码实践 -计算机视觉-40目标检测和边界框

40目标检测和边界框

python 复制代码
import torch
from PIL import Image
import matplotlib.pylab as plt
from d2l import torch as d2l

plt.figure('catdog')
img = Image.open('../limuPytorch/images/catdog.jpg')
plt.imshow(img)
plt.show()

# 边界框
#@save
def box_corner_to_center(boxes):
    """从(左上,右下)转换到(中间,宽度,高度)"""
    x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    cx = (x1 + x2) / 2
    cy = (y1 + y2) / 2
    w = x2 - x1
    h = y2 - y1
    boxes = torch.stack((cx, cy, w, h), axis=-1)
    return boxes

#@save
def box_center_to_corner(boxes):
    """从(中间,宽度,高度)转换到(左上,右下)"""
    cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    x1 = cx - 0.5 * w
    y1 = cy - 0.5 * h
    x2 = cx + 0.5 * w
    y2 = cy + 0.5 * h
    boxes = torch.stack((x1, y1, x2, y2), axis=-1)
    return boxes

# bbox是边界框的英文缩写
dog_bbox, cat_bbox = [60.0, 45.0, 378.0, 516.0], [400.0, 112.0, 655.0, 493.0]

# 通过转换两次来验证边界框转换函数的正确性
boxes = torch.tensor((dog_bbox, cat_bbox))
print(box_center_to_corner(box_corner_to_center(boxes)) == boxes)
# tensor([[True, True, True, True],
#         [True, True, True, True]])

# 将边界框表示成matplotlib的边界框格式
#@save
def bbox_to_rect(bbox, color):
    # 将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
    # ((左上x,左上y),宽,高)
    return plt.Rectangle(
        xy = (bbox[0], bbox[1]), 
        width = bbox[2] - bbox[0], 
        height= bbox[3] - bbox[1],
        fill=False, 
        edgecolor=color, 
        linewidth=2
    )

# 图像上添加边界框
fig = plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'))
plt.show()

运行结果:

相关推荐
jake don4 小时前
AI 深度学习路线
人工智能·深度学习
bst@微胖子5 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
心态与习惯7 小时前
深度学习中的 seq2seq 模型
人工智能·深度学习·seq2seq
啊阿狸不会拉杆8 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
AI即插即用8 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
Coding茶水间10 小时前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
飞Link10 小时前
【论文笔记】《Deep Learning for Time Series Anomaly Detection: A Survey》
rnn·深度学习·神经网络·cnn·transformer
大模型实验室Lab4AI10 小时前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪
爱打代码的小林11 小时前
opencv基础(轮廓检测、绘制与特征)
人工智能·opencv·计算机视觉
Takoony11 小时前
深度学习多卡训练必须使用偶数张GPU吗?原理深度解析
人工智能·深度学习