动手学深度学习(Pytorch版)代码实践 -计算机视觉-40目标检测和边界框

40目标检测和边界框

python 复制代码
import torch
from PIL import Image
import matplotlib.pylab as plt
from d2l import torch as d2l

plt.figure('catdog')
img = Image.open('../limuPytorch/images/catdog.jpg')
plt.imshow(img)
plt.show()

# 边界框
#@save
def box_corner_to_center(boxes):
    """从(左上,右下)转换到(中间,宽度,高度)"""
    x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    cx = (x1 + x2) / 2
    cy = (y1 + y2) / 2
    w = x2 - x1
    h = y2 - y1
    boxes = torch.stack((cx, cy, w, h), axis=-1)
    return boxes

#@save
def box_center_to_corner(boxes):
    """从(中间,宽度,高度)转换到(左上,右下)"""
    cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    x1 = cx - 0.5 * w
    y1 = cy - 0.5 * h
    x2 = cx + 0.5 * w
    y2 = cy + 0.5 * h
    boxes = torch.stack((x1, y1, x2, y2), axis=-1)
    return boxes

# bbox是边界框的英文缩写
dog_bbox, cat_bbox = [60.0, 45.0, 378.0, 516.0], [400.0, 112.0, 655.0, 493.0]

# 通过转换两次来验证边界框转换函数的正确性
boxes = torch.tensor((dog_bbox, cat_bbox))
print(box_center_to_corner(box_corner_to_center(boxes)) == boxes)
# tensor([[True, True, True, True],
#         [True, True, True, True]])

# 将边界框表示成matplotlib的边界框格式
#@save
def bbox_to_rect(bbox, color):
    # 将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
    # ((左上x,左上y),宽,高)
    return plt.Rectangle(
        xy = (bbox[0], bbox[1]), 
        width = bbox[2] - bbox[0], 
        height= bbox[3] - bbox[1],
        fill=False, 
        edgecolor=color, 
        linewidth=2
    )

# 图像上添加边界框
fig = plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'))
plt.show()

运行结果:

相关推荐
惯导马工5 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
xiaohouzi1122331 天前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
小关会打代码1 天前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
隐语SecretFlow1 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
天天进步20151 天前
用Python打造专业级老照片修复工具:让时光倒流的数字魔法
人工智能·计算机视觉
荼蘼1 天前
答题卡识别改分项目
人工智能·opencv·计算机视觉
Billy_Zuo1 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈1 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy1 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
IT古董1 天前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn