AI硬件加速版XVDPU入门

XVDPU是可以提高CNN计算的速度和延迟,他的目标不是直接替换软件在传统硬件或者通用GPU上实现CNN运算。他的目标就是加速CNN计算。

XVDP的实现方式:CNN卷积计算的是 原始图形矩阵{x行*y列*通道数a}*卷积滑块{w行g列t通道}=卷积后的图形{m行*n列*通道数b}

所以xvdpu的实现:

第一个就是硬件矩阵乘法 MAC计算:乘法+累加

因为这里会有矩阵行列的限制,所以遇到大矩阵,就需要把矩阵拆分为多个矩阵进行计算,但这时候卷积滑块是固定的,需要保留卷积滑块在一个共享的存储中,以供多批次多AIE核心的共享使用,同样在读取原始图形时,已要一次加载到一个快速存储中供买个AIE核进行读取部分需要的块进行计算,但下一次读取其他块内容已是能从这个快速访问的存储中读取数据。

所以就引出来xvdpu的存储实现:

vxdpu中存储分为ddr外部存储,pl中的共享特征图缓存,Pl中的共享权重缓存,aie整列中每个aie核的内部存储。数据流动是 ddr->pl特征图+Pl共享权重->AIE内核存储。只有在第一层是要从ddr加载特征图和权重数据道pl缓存,只有在最后一层输出omf的时候要从pl缓存写到ddr4。所以这里就还需要用来移动数据的控制器,在vxdpu中有两个datamove和load引擎,datemove是在PL上:把数据从ddr->PL缓存(特征图和共享权重),PL缓存->aie阵列本地存储。 Load引擎是在aie核内:aie本地存储->AIE的MAC计算器

所以就引出aie mac在计算的时候数据单位:

aie核的mac计算能力,这里设计的是2*8*8. 128*int8 操作。

aie核读取特征图是每个aie核都有单独的axi接口,读取能力是128字节,aie核读取共享权重是有个共享axi接口,读取能力是512字节.

所以就引出xvdpu的整体模块有哪些:

|-----|-------------------|--------------|
| ddr | | 外部存储 |
| ps | | 运行vitis ai工具 |
| pl | pl中的共享特征图缓存 | |
| pl | pl中的共享权重缓存 | |
| pl | pl中的DATAMOVE数据移动器 | |
| pl | pl中ALU计算器 | |
| aie | aie阵列 | |
| aie | aie核心mac计算引擎 | |
| aie | load引擎 | |
| aie | aie本地存储 | |

下一遍文章解释ps中vitis ai用来进行ai开发的内容

相关推荐
AI_56783 小时前
阿里云OSS成本优化:生命周期规则+分层存储省70%
运维·数据库·人工智能·ai
龙山云仓3 小时前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
zxsz_com_cn3 小时前
设备预测性维护指的是什么 设备预测性维护传感器的作用
人工智能
可编程芯片开发3 小时前
基于PSO粒子群优化PI控制器的无刷直流电机最优控制系统simulink建模与仿真
人工智能·算法·simulink·pso·pi控制器·pso-pi
迎仔3 小时前
02-AI常见名词通俗解释
人工智能
程序员ken3 小时前
深入理解大语言模型(8) 使用 LangChain 开发应用程序之上下文记忆
人工智能·python·语言模型·langchain
Tadas-Gao3 小时前
深度学习与机器学习的知识路径:从必要基石到独立范式
人工智能·深度学习·机器学习·架构·大模型·llm
TTGGGFF3 小时前
从“千问送奶茶”看AI Agent落地:火爆、崩塌与进化方向
人工智能
OPEN-Source3 小时前
大模型实战:把自定义 Agent 封装成一个 HTTP 服务
人工智能·agent·deepseek
不懒不懒3 小时前
【从零开始:PyTorch实现MNIST手写数字识别全流程解析】
人工智能·pytorch·python