AI硬件加速版XVDPU入门

XVDPU是可以提高CNN计算的速度和延迟,他的目标不是直接替换软件在传统硬件或者通用GPU上实现CNN运算。他的目标就是加速CNN计算。

XVDP的实现方式:CNN卷积计算的是 原始图形矩阵{x行*y列*通道数a}*卷积滑块{w行g列t通道}=卷积后的图形{m行*n列*通道数b}

所以xvdpu的实现:

第一个就是硬件矩阵乘法 MAC计算:乘法+累加

因为这里会有矩阵行列的限制,所以遇到大矩阵,就需要把矩阵拆分为多个矩阵进行计算,但这时候卷积滑块是固定的,需要保留卷积滑块在一个共享的存储中,以供多批次多AIE核心的共享使用,同样在读取原始图形时,已要一次加载到一个快速存储中供买个AIE核进行读取部分需要的块进行计算,但下一次读取其他块内容已是能从这个快速访问的存储中读取数据。

所以就引出来xvdpu的存储实现:

vxdpu中存储分为ddr外部存储,pl中的共享特征图缓存,Pl中的共享权重缓存,aie整列中每个aie核的内部存储。数据流动是 ddr->pl特征图+Pl共享权重->AIE内核存储。只有在第一层是要从ddr加载特征图和权重数据道pl缓存,只有在最后一层输出omf的时候要从pl缓存写到ddr4。所以这里就还需要用来移动数据的控制器,在vxdpu中有两个datamove和load引擎,datemove是在PL上:把数据从ddr->PL缓存(特征图和共享权重),PL缓存->aie阵列本地存储。 Load引擎是在aie核内:aie本地存储->AIE的MAC计算器

所以就引出aie mac在计算的时候数据单位:

aie核的mac计算能力,这里设计的是2*8*8. 128*int8 操作。

aie核读取特征图是每个aie核都有单独的axi接口,读取能力是128字节,aie核读取共享权重是有个共享axi接口,读取能力是512字节.

所以就引出xvdpu的整体模块有哪些:

|-----|-------------------|--------------|
| ddr | | 外部存储 |
| ps | | 运行vitis ai工具 |
| pl | pl中的共享特征图缓存 | |
| pl | pl中的共享权重缓存 | |
| pl | pl中的DATAMOVE数据移动器 | |
| pl | pl中ALU计算器 | |
| aie | aie阵列 | |
| aie | aie核心mac计算引擎 | |
| aie | load引擎 | |
| aie | aie本地存储 | |

下一遍文章解释ps中vitis ai用来进行ai开发的内容

相关推荐
愚公搬代码16 分钟前
【愚公系列】《扣子开发 AI Agent 智能体应用》003-扣子 AI 应用开发平台介绍(选择扣子的理由)
人工智能
lhrimperial41 分钟前
AI工程化实践指南:从入门到落地
人工智能
jifengzhiling1 小时前
零极点对消:原理、作用与风险
人工智能·算法
科技看点1 小时前
想帮帮服务智能体荣获2025 EDGE AWARDS「最佳AI创新应用」大奖
人工智能
m0_704887891 小时前
DAY 40
人工智能·深度学习
Katecat996631 小时前
【海滩垃圾检测与分类识别-基于改进YOLO13-seg-iRMB模型】
人工智能·数据挖掘
程序员佳佳1 小时前
2025年大模型终极横评:GPT-5.2、Banana Pro与DeepSeek V3.2实战硬核比拼(附统一接入方案)
服务器·数据库·人工智能·python·gpt·api
鲨莎分不晴2 小时前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
工业机器视觉设计和实现2 小时前
lenet改vgg成功后,我们再改为最简单的resnet
人工智能