offer7.重建二叉树

根据二叉树的前序遍历和中序遍历重建二叉树

问题描述:输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如,输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建如下图所示的二叉树并输出它的头节点。


  • 二叉树的定义如下:
cpp 复制代码
struct TreeNode{
    int val;
    TreeNode* left;
    TreeNode* right;
};
  • 解题思路:前序遍历中的第一个数字即为根节点的值,二叉树节点的值各不相同,那么可以扫描中序遍历数组中找到根节点值所在下标位置。又根据中序遍历的特点,在根节点左边的所有数值为根节点的左子树,在根节点右边的所有数值为根节点的右子树。或以得到根节点左右子树中序遍历和先序遍历两个子数组,然后可以递归重建它的左右子树,最后完成整棵二叉树的重建。
cpp 复制代码
TreeNode* Construct(int* preorder,int* inorder,int length){           //通进先序遍历和中序遍历确定一棵二叉树
  if(preorder == nullptr || inorder == nullptr || length <= 0){
    return nullptr;
  }
  return ConstructCore(preorder,preorder + length - 1,inorder,inorder + length - 1);
}

TreeNode* ConstructCore(int* startPreorder,int* endPreorder,int* startInorder,int* endInorder){
  //前序遍历第一个数字是根节点的值
  int rootValue = startPreorder[0];
  TreeNode* root = new TreeNode();    //新建一个二叉树节点
  root->val = rootValue;
  root->left = root->right = nullptr;
  if(startPreorder == endPreorder){
    if(startInorder == endInorder && *startPreorder == *startInorder){
      return root;                              //如果当前节点是最后一个节点,没有后继节点则返回
    }
    else{
      throw exception();
    }
  }
  //在中序遍历序列中找到根节点的值
  int* rootInorder = startInorder;
  while(rootInorder <= endInorder && *rootInorder != rootValue){
    rootInorder++;
  }
  if(rootInorder == endInorder && *rootInorder != rootValue){
    throw exception();                        //如果根节点不存在,则抛出异常
  }

  int leftLength = rootInorder - startInorder;      //左子树 中序和前序数组的长度
  int *leftPreorderEnd = startPreorder + leftLength;    //左子树------数组的终点
  if(leftLength > 0){
    //构建左子树
    root->left = ConstructCore(startPreorder + 1,leftPreorderEnd,startInorder,rootInorder - 1);
  }
  if(leftLength < endPreorder - startPreorder){
    //构建右子树
    root->right = ConstructCore(leftPreorderEnd + 1,endPreorder,rootInorder + 1,endInorder);
  }
  return root;
}
  • 可以通过main函数调用进行验证:
cpp 复制代码
#include <iostream>
using namespace std;

int main(){
  
  //由前序遍历和中序遍历构造出完整的二叉树
  int preorder[10] = {1,2,4,7,3,5,6,8,9,10};
  int inorder[10] = {4,7,2,1,5,3,8,6,9,10};

  TreeNode* root = Construct(preorder,inorder,10);
  dfs(root);        //通过dfs打印二叉树的节点
  cout<<endl;

    return 0;
}

 void dfs(TreeNode* root){
    if(root == nullptr)
        return;
    dfs(root->left);
    cout<<root->val<<" ";
    dfs(root->right);
}
相关推荐
Trent19851 小时前
影楼精修-肤色统一算法解析
图像处理·人工智能·算法·计算机视觉
feifeigo1231 小时前
高光谱遥感图像处理之数据分类的fcm算法
图像处理·算法·分类
北上ing2 小时前
算法练习:19.JZ29 顺时针打印矩阵
算法·leetcode·矩阵
.格子衫.3 小时前
真题卷001——算法备赛
算法
XiaoyaoCarter3 小时前
每日一道leetcode
c++·算法·leetcode·职场和发展·二分查找·深度优先·前缀树
Hygge-star3 小时前
【数据结构】二分查找5.12
java·数据结构·程序人生·算法·学习方法
June`5 小时前
专题二:二叉树的深度搜索(二叉树剪枝)
c++·算法·深度优先·剪枝
加什么瓦5 小时前
Redis——底层数据结构
数据结构
小狗祈祷诗5 小时前
day22-数据结构之 栈&&队列
c语言·数据结构
好吃的肘子6 小时前
Elasticsearch架构原理
开发语言·算法·elasticsearch·架构·jenkins