AI与Python共舞:如何利用深度学习优化推荐系统?(2)

推荐系统的前世今生

推荐系统的历史可以追溯到20世纪90年代,从最初的基于内容过滤和协同过滤,到现在融合了机器学习甚至是深度学习的混合型推荐,其目标始终如一:更精准、更个性化地为用户推荐内容。随着Python的普及,用它来构建推荐系统成了许多开发者的选择,原因无他,Python生态丰富、易学易用,再加上TensorFlow、PyTorch这样的深度学习框架加持,构建高效推荐模型不再是梦。

案例:深度学习在电影推荐中的应用

想象一下,我们要为一个在线电影平台设计一个推荐系统,让用户发现他们可能爱上的电影。我们选择使用深度神经网络(DNN)来实现这一目标,特别是结合协同过滤的思路。下面就是我们如何通过Python和深度学习打造这一魔法般的体验。

数据准备

首先,我们需要大量的用户行为数据,包括用户对电影的评分、观看历史等。这些数据通常会经过清洗和预处理,以便转换成模型可以理解的格式。利用Pandas库,数据处理变得轻而易举。

模型架构

接下来,我们设计一个双塔模型(Two-Tower Model),这是近年来深度学习推荐系统中非常流行的一种架构。一个塔负责编码用户特征,另一个塔则处理电影特征。两塔通过点积计算相似度,进而预测用户对未观看电影的喜好程度。

  • 用户塔可以接收用户的ID,通过多层嵌入和全连接层,输出用户的向量表示。
  • 电影塔同理,接收电影ID,输出电影的向量表示。

这里,我们可以借助TensorFlow的embedding层和Dense层快速搭建模型。至于模型训练,Adam优化器加上交叉熵损失函数是常见的选择。

实战演练

在实际代码实现过程中,我们使用TensorFlow的数据集API来处理训练数据的批量化和迭代。每一轮训练后,我们通过验证集评估模型表现,并适时保存最优模型,以防过拟合。

目前PlugLink发布了开源版和应用版,开源版下载地址:

Github地址:https://github.com/zhengqia/PlugLink

Gitcode地址:https://gitcode.com/zhengiqa8/PlugLink/overview

Gitee地址:https://gitee.com/xinyizq/PlugLink

应用版下载地址:

链接:https://pan.baidu.com/s/19tinAQNFDxs-041Zn7YwcQ?pwd=PLUG

提取码:PLUG

相关推荐
韩曙亮2 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分
科普瑞传感仪器2 小时前
从轴孔装配到屏幕贴合:六维力感知的机器人柔性对位应用详解
前端·javascript·数据库·人工智能·机器人·自动化·无人机
说私域2 小时前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的社群运营创新研究
人工智能·小程序·开源
程序员小灰2 小时前
谷歌AI模型Gemini 3.0 Pro,已经杀疯了!
人工智能·aigc·gemini
杨浦老苏3 小时前
AI驱动的图表生成器Next-AI-Draw.io
人工智能·docker·ai·群晖·draw.io
喵叔哟3 小时前
6.配置管理详解
后端·python·flask
曾经的三心草3 小时前
基于正倒排索引的Java文档搜索引擎3-实现Index类-实现搜索模块-实现DocSearcher类
java·python·搜索引擎
饭饭大王6663 小时前
深度学习在计算机视觉中的最新进展
人工智能·深度学习·计算机视觉
John_ToDebug3 小时前
浏览器内核的“智变”:从渲染引擎到AI原生操作系统的征途
人工智能·chrome
用户4802151702473 小时前
Transformer 的技术层面
人工智能