推荐系统的前世今生
推荐系统的历史可以追溯到20世纪90年代,从最初的基于内容过滤和协同过滤,到现在融合了机器学习甚至是深度学习的混合型推荐,其目标始终如一:更精准、更个性化地为用户推荐内容。随着Python的普及,用它来构建推荐系统成了许多开发者的选择,原因无他,Python生态丰富、易学易用,再加上TensorFlow、PyTorch这样的深度学习框架加持,构建高效推荐模型不再是梦。
案例:深度学习在电影推荐中的应用
想象一下,我们要为一个在线电影平台设计一个推荐系统,让用户发现他们可能爱上的电影。我们选择使用深度神经网络(DNN)来实现这一目标,特别是结合协同过滤的思路。下面就是我们如何通过Python和深度学习打造这一魔法般的体验。
数据准备
首先,我们需要大量的用户行为数据,包括用户对电影的评分、观看历史等。这些数据通常会经过清洗和预处理,以便转换成模型可以理解的格式。利用Pandas库,数据处理变得轻而易举。
模型架构
接下来,我们设计一个双塔模型(Two-Tower Model),这是近年来深度学习推荐系统中非常流行的一种架构。一个塔负责编码用户特征,另一个塔则处理电影特征。两塔通过点积计算相似度,进而预测用户对未观看电影的喜好程度。
- 用户塔可以接收用户的ID,通过多层嵌入和全连接层,输出用户的向量表示。
- 电影塔同理,接收电影ID,输出电影的向量表示。
这里,我们可以借助TensorFlow的embedding层和Dense层快速搭建模型。至于模型训练,Adam优化器加上交叉熵损失函数是常见的选择。
实战演练
在实际代码实现过程中,我们使用TensorFlow的数据集API来处理训练数据的批量化和迭代。每一轮训练后,我们通过验证集评估模型表现,并适时保存最优模型,以防过拟合。
目前PlugLink发布了开源版和应用版,开源版下载地址:
Github地址:https://github.com/zhengqia/PlugLink
Gitcode地址:https://gitcode.com/zhengiqa8/PlugLink/overview
Gitee地址:https://gitee.com/xinyizq/PlugLink
应用版下载地址:
链接:https://pan.baidu.com/s/19tinAQNFDxs-041Zn7YwcQ?pwd=PLUG
提取码:PLUG