AI与Python共舞:如何利用深度学习优化推荐系统?(2)

推荐系统的前世今生

推荐系统的历史可以追溯到20世纪90年代,从最初的基于内容过滤和协同过滤,到现在融合了机器学习甚至是深度学习的混合型推荐,其目标始终如一:更精准、更个性化地为用户推荐内容。随着Python的普及,用它来构建推荐系统成了许多开发者的选择,原因无他,Python生态丰富、易学易用,再加上TensorFlow、PyTorch这样的深度学习框架加持,构建高效推荐模型不再是梦。

案例:深度学习在电影推荐中的应用

想象一下,我们要为一个在线电影平台设计一个推荐系统,让用户发现他们可能爱上的电影。我们选择使用深度神经网络(DNN)来实现这一目标,特别是结合协同过滤的思路。下面就是我们如何通过Python和深度学习打造这一魔法般的体验。

数据准备

首先,我们需要大量的用户行为数据,包括用户对电影的评分、观看历史等。这些数据通常会经过清洗和预处理,以便转换成模型可以理解的格式。利用Pandas库,数据处理变得轻而易举。

模型架构

接下来,我们设计一个双塔模型(Two-Tower Model),这是近年来深度学习推荐系统中非常流行的一种架构。一个塔负责编码用户特征,另一个塔则处理电影特征。两塔通过点积计算相似度,进而预测用户对未观看电影的喜好程度。

  • 用户塔可以接收用户的ID,通过多层嵌入和全连接层,输出用户的向量表示。
  • 电影塔同理,接收电影ID,输出电影的向量表示。

这里,我们可以借助TensorFlow的embedding层和Dense层快速搭建模型。至于模型训练,Adam优化器加上交叉熵损失函数是常见的选择。

实战演练

在实际代码实现过程中,我们使用TensorFlow的数据集API来处理训练数据的批量化和迭代。每一轮训练后,我们通过验证集评估模型表现,并适时保存最优模型,以防过拟合。

目前PlugLink发布了开源版和应用版,开源版下载地址:

Github地址:https://github.com/zhengqia/PlugLink

Gitcode地址:https://gitcode.com/zhengiqa8/PlugLink/overview

Gitee地址:https://gitee.com/xinyizq/PlugLink

应用版下载地址:

链接:https://pan.baidu.com/s/19tinAQNFDxs-041Zn7YwcQ?pwd=PLUG

提取码:PLUG

相关推荐
985小水博一枚呀8 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
龙哥说跨境8 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
AltmanChan9 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀12 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路22 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
小白学大数据24 分钟前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman91126 分钟前
python在word中插入图片
python·microsoft·自动化·word
爱技术的小伙子28 分钟前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
菜鸟的人工智能之路29 分钟前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼2 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍