AI与Python共舞:如何利用深度学习优化推荐系统?(2)

推荐系统的前世今生

推荐系统的历史可以追溯到20世纪90年代,从最初的基于内容过滤和协同过滤,到现在融合了机器学习甚至是深度学习的混合型推荐,其目标始终如一:更精准、更个性化地为用户推荐内容。随着Python的普及,用它来构建推荐系统成了许多开发者的选择,原因无他,Python生态丰富、易学易用,再加上TensorFlow、PyTorch这样的深度学习框架加持,构建高效推荐模型不再是梦。

案例:深度学习在电影推荐中的应用

想象一下,我们要为一个在线电影平台设计一个推荐系统,让用户发现他们可能爱上的电影。我们选择使用深度神经网络(DNN)来实现这一目标,特别是结合协同过滤的思路。下面就是我们如何通过Python和深度学习打造这一魔法般的体验。

数据准备

首先,我们需要大量的用户行为数据,包括用户对电影的评分、观看历史等。这些数据通常会经过清洗和预处理,以便转换成模型可以理解的格式。利用Pandas库,数据处理变得轻而易举。

模型架构

接下来,我们设计一个双塔模型(Two-Tower Model),这是近年来深度学习推荐系统中非常流行的一种架构。一个塔负责编码用户特征,另一个塔则处理电影特征。两塔通过点积计算相似度,进而预测用户对未观看电影的喜好程度。

  • 用户塔可以接收用户的ID,通过多层嵌入和全连接层,输出用户的向量表示。
  • 电影塔同理,接收电影ID,输出电影的向量表示。

这里,我们可以借助TensorFlow的embedding层和Dense层快速搭建模型。至于模型训练,Adam优化器加上交叉熵损失函数是常见的选择。

实战演练

在实际代码实现过程中,我们使用TensorFlow的数据集API来处理训练数据的批量化和迭代。每一轮训练后,我们通过验证集评估模型表现,并适时保存最优模型,以防过拟合。

目前PlugLink发布了开源版和应用版,开源版下载地址:

Github地址:https://github.com/zhengqia/PlugLink

Gitcode地址:https://gitcode.com/zhengiqa8/PlugLink/overview

Gitee地址:https://gitee.com/xinyizq/PlugLink

应用版下载地址:

链接:https://pan.baidu.com/s/19tinAQNFDxs-041Zn7YwcQ?pwd=PLUG

提取码:PLUG

相关推荐
空影星3 分钟前
Tablecruncher,一款轻量级CSV编辑器
python·编辑器·电脑·智能硬件
golang学习记5 分钟前
Anthropic 发布轻量级模型Claude Haiku 4.5:更快,更便宜,更聪明
人工智能
bin915317 分钟前
当AI开始‘映射‘用户数据:初级Python开发者的创意‘高阶函数‘如何避免被‘化简‘?—— 老码农的函数式幽默
开发语言·人工智能·python·工具·ai工具
CoovallyAIHub33 分钟前
Mamba-3震撼登场!Transformer最强挑战者再进化,已进入ICLR 2026盲审
深度学习·算法·计算机视觉
万粉变现经纪人1 小时前
如何解决 pip install -r requirements.txt 私有仓库认证失败 401 Unauthorized 问题
开发语言·python·scrapy·flask·beautifulsoup·pandas·pip
飞哥数智坊1 小时前
一文看懂 Claude Skills:让你的 AI 按规矩高效干活
人工智能·claude
JY190641061 小时前
从点云到模型,徕卡RTC360如何搞定铝单板测量?
深度学习
IT_陈寒2 小时前
5个Java 21新特性实战技巧,让你的代码性能飙升200%!
前端·人工智能·后端
dlraba8022 小时前
YOLOv3:目标检测领域的经典之作
人工智能·yolo·目标检测
科新数智2 小时前
破解商家客服困局:真人工AI回复如何成为转型核心
人工智能·#agent #智能体