关于Disruptor监听策略

Disruptor框架提供了多种等待策略,每种策略都有其适用的场景和特点。以下是这些策略的详细介绍及其适用场景:

1. BlockingWaitStrategy

  • 特点
    • 使用锁和条件变量进行线程间通信,线程在等待时会进入阻塞状态,释放CPU资源。
  • 适用场景
    • 适合对延迟要求不高的应用。
    • 系统资源有限,需要最大化CPU利用率,减少不必要的CPU占用。
    • 典型应用:批处理系统、日志处理系统。

2. BusySpinWaitStrategy

  • 特点
    • 不释放CPU资源,线程不断循环等待事件。
  • 适用场景
    • 适合对延迟非常敏感的应用。
    • 系统有充足的CPU资源,并且能够接受高CPU使用率。
    • 典型应用:高频交易系统。

3. LiteBlockingWaitStrategy

  • 特点
    • 类似于BlockingWaitStrategy,但实现更轻量级。
    • 同样使用锁和条件变量。
  • 适用场景
    • 适合需要节省CPU资源但又不希望完全阻塞的应用。
    • 系统资源有限,且对延迟要求适中。
    • 典型应用:一般的企业应用。

4. LiteTimeoutBlockingWaitStrategy

  • 特点
    • 类似于LiteBlockingWaitStrategy,但支持超时等待。
    • 使用锁、条件变量和超时机制。
  • 适用场景
    • 适合需要节省CPU资源且有超时机制需求的应用。
    • 系统资源有限,对延迟要求适中,并希望在等待超时后进行特定处理。
    • 典型应用:网络通信应用,需要在一定时间内收到响应。

5. PhasedBackoffWaitStrategy

  • 特点
    • 结合了多种等待策略,根据不同的条件逐步后退。
    • 支持多阶段等待,包括忙等待、yield和阻塞等待。
  • 适用场景
    • 适合需要灵活应对不同负载条件的应用。
    • 系统资源情况不确定,且需要在不同负载下自动调整等待策略。
    • 典型应用:动态负载的应用系统。

6. SleepingWaitStrategy

  • 特点
    • 线程在等待时短暂休眠,降低CPU占用。
  • 适用场景
    • 适合对延迟要求不高且希望减少CPU占用的应用。
    • 系统资源有限,且不需要高频事件处理。
    • 典型应用:后台任务处理。

7. TimeoutBlockingWaitStrategy

  • 特点
    • 类似于BlockingWaitStrategy,但支持超时等待。
    • 使用锁、条件变量和超时机制。
  • 适用场景
    • 适合需要节省CPU资源且有超时机制需求的应用。
    • 系统资源有限,对延迟要求适中,并希望在等待超时后进行特定处理。
    • 典型应用:超时网络通信、数据处理任务。

8. YieldingWaitStrategy

  • 特点
    • 使用Thread.yield()方法让出CPU资源,允许其他线程运行。
    • 当没有新事件时,线程会进入短暂的休眠状态。
  • 适用场景
    • 适合延迟敏感的应用场景。
    • 系统有足够的CPU资源来处理并发任务,并希望在高吞吐量和低延迟之间取得平衡。
    • 典型应用:实时数据处理系统。

选择策略的综合建议

  • 低延迟,高吞吐量
    • 使用BusySpinWaitStrategyYieldingWaitStrategy
  • 中等延迟,节省资源
    • 使用SleepingWaitStrategyLiteBlockingWaitStrategyPhasedBackoffWaitStrategy
  • 资源有限,低CPU占用
    • 使用BlockingWaitStrategyTimeoutBlockingWaitStrategy

示例代码

使用PhasedBackoffWaitStrategy
java 复制代码
Disruptor<Holder> disruptor = new Disruptor<>(
        new HolderEventFactory(),
        bufferSize,
        new ThreadFactoryBuilder().setNameFormat("disruptor-thread-%d").build(),
        ProducerType.MULTI,
        PhasedBackoffWaitStrategy.withLock(
                new BusySpinWaitStrategy(),
                new BlockingWaitStrategy(),
                10, TimeUnit.MILLISECONDS
        )
);

通过理解每种策略的特点和适用场景,可以根据实际需求选择最合适的等待策略,确保系统在高并发情况下既能满足性能要求,又能有效利用系统资源。

相关推荐
q***710121 小时前
Spring Boot(快速上手)
java·spring boot·后端
better_liang1 天前
每日Java面试场景题知识点之-分布式事务处理
java·微服务·面试·springcloud·分布式事务
L***d6701 天前
Spring Boot 各种事务操作实战(自动回滚、手动回滚、部分回滚)
java·数据库·spring boot
凌波粒1 天前
Springboot基础教程(3)--自动装配原理/静态资源处理/欢迎页
java·spring boot·后端
likuolei1 天前
XSL-FO 软件
java·开发语言·前端·数据库
凌波粒1 天前
SpringBoot基础教程(2)--yaml/配置文件注入/数据校验/多环境配置
java·spring boot·后端·spring
S***26751 天前
Spring Boot环境配置
java·spring boot·后端
6***83051 天前
什么是Spring Boot 应用开发?
java·spring boot·后端
毕设源码柳学姐1 天前
计算机毕设 java 智慧社区服务系统 SSM 框架社区生活平台 Java 开发的便民服务与互动系统
java·开发语言·生活
U***l8321 天前
【postgresql】分区表管理
java·数据库·postgresql