【IJCAI2024】LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens

【IJCAI2024】LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens for Remote Sensing Image Interpretation

论文:https://arxiv.org/abs/2405.09789

代码:https://github.com/ViTAE-Transformer/LeMeViT

由于相邻像素和图像块之间的高度相关性,以及遥感图像中纹理和模式的重复性质,存在大量的空间冗余。如下图所示,ViT 中的自注意力机制计算每两个图像块之间的相似性,相似的token对特征表示的贡献很小,但消耗了大量的计算负载,影响了模型性能。

为此,作者提出了下图所示的框架。本质上引入了一个可学习的 meta token(类似于原型或者记忆),不断的进行 image token 和 meta token 的信息交换。值得注意的是,网络的浅层使用的是cross-attention,深层使用的是自注意力(作者解释是自注意力的性能更高)。

作者在语义分割、目标检测等多个应用上做了大量实验,结果表明该方法具有较好的性能。有个有趣的消融实验是meta token 长度对性能的影响。长度为 64、32、16 和 8时,准确率几乎相同。这进一步证实了注意力计算的冗余,表明使用较少数量的 meta token 来表示密集图像 token 的动机。最后,考虑到效率和准确性,作者选择 16 作为 meta token 长度的默认设置。

作者还可视化了 dual cross attention最后一个块中,交叉注意映射结果。自然图像上的实验结果表明,学习到的 meta token 可以很好地关注图像中的目标,有助于提高分类精度。遥感图像上的实验结果则表明不同的 meta token 负责图像的不同语义部分。

相关推荐
mit6.8241 分钟前
PyTorch & Transformers| Azure
人工智能
程序员陆通4 分钟前
OpenAI Dev Day 2025:AI开发新纪元的全面布局
人工智能
新兴ICT项目支撑4 分钟前
BERT文本分类超参数优化实战:从13小时到83秒的性能飞跃
人工智能·分类·bert
真智AI7 分钟前
小模型大智慧:新一代轻量化语言模型全解析
人工智能·语言模型·自然语言处理
小关会打代码33 分钟前
深度学习之YOLO系列YOLOv1
人工智能·深度学习·yolo
大山同学35 分钟前
CNN手写数字识别minist
人工智能·神经网络·cnn
道可云1 小时前
道可云人工智能每日资讯|2025世界智能网联汽车大会将在北京举办
人工智能·百度·汽车·ar·xr·deepseek
一车小面包1 小时前
Transformer Decoder 中序列掩码(Sequence Mask / Look-ahead Mask)
人工智能·深度学习·transformer
JY190641061 小时前
徕卡RTC360助力铝单板设计效率提升
人工智能