【IJCAI2024】LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens

【IJCAI2024】LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens for Remote Sensing Image Interpretation

论文:https://arxiv.org/abs/2405.09789

代码:https://github.com/ViTAE-Transformer/LeMeViT

由于相邻像素和图像块之间的高度相关性,以及遥感图像中纹理和模式的重复性质,存在大量的空间冗余。如下图所示,ViT 中的自注意力机制计算每两个图像块之间的相似性,相似的token对特征表示的贡献很小,但消耗了大量的计算负载,影响了模型性能。

为此,作者提出了下图所示的框架。本质上引入了一个可学习的 meta token(类似于原型或者记忆),不断的进行 image token 和 meta token 的信息交换。值得注意的是,网络的浅层使用的是cross-attention,深层使用的是自注意力(作者解释是自注意力的性能更高)。

作者在语义分割、目标检测等多个应用上做了大量实验,结果表明该方法具有较好的性能。有个有趣的消融实验是meta token 长度对性能的影响。长度为 64、32、16 和 8时,准确率几乎相同。这进一步证实了注意力计算的冗余,表明使用较少数量的 meta token 来表示密集图像 token 的动机。最后,考虑到效率和准确性,作者选择 16 作为 meta token 长度的默认设置。

作者还可视化了 dual cross attention最后一个块中,交叉注意映射结果。自然图像上的实验结果表明,学习到的 meta token 可以很好地关注图像中的目标,有助于提高分类精度。遥感图像上的实验结果则表明不同的 meta token 负责图像的不同语义部分。

相关推荐
小毅&Nora1 分钟前
【人工智能】【AI外呼】 ⑤ FreeSWITCH 深度解析:原理、安装、在智能外呼中的核心地位与未来演进
人工智能·freeswitch·ai外呼
ziwu1 分钟前
【车型识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·深度学习·图像识别
paperxie_xiexuo40 分钟前
文献综述不是写作任务,而是一次“认知脚手架”的搭建:PaperXie 如何通过结构化输入,帮你把碎片阅读转化为可辩护的学术立场?
大数据·人工智能·ai写作
数据门徒44 分钟前
《人工智能现代方法(第4版)》 第6章 约束满足问题 学习笔记
人工智能·笔记·学习·算法
java_logo1 小时前
MILVUS Docker 容器化部署指南
运维·人工智能·docker·容器·prometheus·milvus
Mxsoft6191 小时前
「S变换精准定位谐波源!某次电能质量异常,时频分析救场!」
人工智能
B站_计算机毕业设计之家1 小时前
python招聘数据 求职就业数据可视化平台 大数据毕业设计 BOSS直聘数据可视化分析系统 Flask框架 Echarts可视化 selenium爬虫技术✅
大数据·python·深度学习·考研·信息可视化·数据分析·flask
数据门徒1 小时前
《人工智能现代方法(第4版)》 第8章 一阶逻辑 学习笔记
人工智能·笔记·学习·算法
好奇龙猫1 小时前
【AI学习-comfyUI学习-第十四节-joycaption3课程工作流工作流-各个部分学习】
人工智能·学习
点云SLAM1 小时前
Decisive 英文单词学习
人工智能·学习·英文单词学习·雅思备考·decisive·起决定性的·果断的