视觉图像面积计算

在图像处理和计算机视觉中,计算对象面积的常见方法有两种:使用四邻域标记算法和使用轮廓计算。每种方法在不同情况下有各自的优缺点。

  1. 四邻域标记算法

    • 优点
      • 简单易实现。
      • 能够处理带有孔洞的复杂区域(只要孔洞不影响连通性判断)。
    • 缺点
      • 对于边缘不清晰或有噪声的图像,可能会导致面积计算误差。
      • 依赖于图像分辨率和阈值选择的精度。
  2. 轮廓计算

    • 优点
      • 通常更精确,因为它直接使用对象的边缘来计算面积。
      • 适合处理边界清晰的对象。
      • 可以在亚像素级别计算面积,提供更高精度。
    • 缺点
      • 计算复杂度相对较高,特别是在图像边缘检测和轮廓提取步骤。
      • 对于有噪声的图像,边缘检测可能会失败或产生错误的轮廓。

更准确的选择

通常情况下,使用轮廓计算面积更为准确,特别是在以下情况下:

  • 图像边缘清晰。
  • 需要高精度的面积计算。
  • 可以处理复杂形状和多种连通区域。

分别代码:

1 轮廓

python 复制代码
# 获取连通域的边界和标签   # 查看各个轮廓
    contours, _ = cv2.findContours(gray_frame_seg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # 筛选出面积较小的轮廓
    option_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > area_threshold]
    logging.info(f'count: {len(contours)}, option contours: {len(option_contours)}')
    # 初始化要计算的参数
    num_contours = len(option_contours)
    areas = np.zeros(num_contours)

2 四邻域标记算法

python 复制代码
    def calculate_perimeter():
        """计算连通区域的周长"""
        contours, _ = cv2.findContours(region.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        perimeter = 0
        for contour in contours:
            perimeter += cv2.arcLength(contour, True)
        return perimeter

    # 找到连通区域并计算每个区域的面积和周长
    labeled_array, num_features = label(gray_frame_seg)
    print(f'labeled_array, num_features:{labeled_array, num_features}')
    areas1 = []
    perimeters1 = []

    # 遍历每个连通区域
    for region_slice in find_objects(labeled_array):
        region = labeled_array[region_slice]
        area = np.sum(region > 0)
        perimeter = calculate_perimeter()
        areas1.append(area)
        perimeters1.append(perimeter)
    print(f'sort areas, len:{len(areas1)}:\n{sorted(areas1)}')
    return areas1, perimeters1
相关推荐
小王子10246 分钟前
数据结构与算法Python版 二叉查找树
数据结构·python·算法·二叉查找树
dundunmm19 分钟前
机器学习之pandas
人工智能·python·机器学习·数据挖掘·pandas
小火炉Q29 分钟前
16 循环语句——for循环
人工智能·python·网络安全
灰勒塔德33 分钟前
Linux-----进程处理(文件IO资源使用)
linux·运维·算法
xiaoshiguang337 分钟前
LeetCode:404.左叶子之和
java·算法·leetcode
计科土狗42 分钟前
前缀和与差分
c++·算法
88号技师1 小时前
真实环境下实车运行,新能源汽车锂离子电池数据集
人工智能·电动汽车·电池状态估计
原点安全1 小时前
“鼎和财险一体化数据安全管控实践”入选信通院金融领域优秀案例
大数据·人工智能·金融
吃个糖糖1 小时前
37 Opencv SIFT 特征检测
人工智能·opencv·计算机视觉
麦田里的稻草人w2 小时前
【YOLO】(基础篇一)YOLO介绍
人工智能·python·神经网络·yolo·机器学习