视觉图像面积计算

在图像处理和计算机视觉中,计算对象面积的常见方法有两种:使用四邻域标记算法和使用轮廓计算。每种方法在不同情况下有各自的优缺点。

  1. 四邻域标记算法

    • 优点
      • 简单易实现。
      • 能够处理带有孔洞的复杂区域(只要孔洞不影响连通性判断)。
    • 缺点
      • 对于边缘不清晰或有噪声的图像,可能会导致面积计算误差。
      • 依赖于图像分辨率和阈值选择的精度。
  2. 轮廓计算

    • 优点
      • 通常更精确,因为它直接使用对象的边缘来计算面积。
      • 适合处理边界清晰的对象。
      • 可以在亚像素级别计算面积,提供更高精度。
    • 缺点
      • 计算复杂度相对较高,特别是在图像边缘检测和轮廓提取步骤。
      • 对于有噪声的图像,边缘检测可能会失败或产生错误的轮廓。

更准确的选择

通常情况下,使用轮廓计算面积更为准确,特别是在以下情况下:

  • 图像边缘清晰。
  • 需要高精度的面积计算。
  • 可以处理复杂形状和多种连通区域。

分别代码:

1 轮廓

python 复制代码
# 获取连通域的边界和标签   # 查看各个轮廓
    contours, _ = cv2.findContours(gray_frame_seg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # 筛选出面积较小的轮廓
    option_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > area_threshold]
    logging.info(f'count: {len(contours)}, option contours: {len(option_contours)}')
    # 初始化要计算的参数
    num_contours = len(option_contours)
    areas = np.zeros(num_contours)

2 四邻域标记算法

python 复制代码
    def calculate_perimeter():
        """计算连通区域的周长"""
        contours, _ = cv2.findContours(region.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        perimeter = 0
        for contour in contours:
            perimeter += cv2.arcLength(contour, True)
        return perimeter

    # 找到连通区域并计算每个区域的面积和周长
    labeled_array, num_features = label(gray_frame_seg)
    print(f'labeled_array, num_features:{labeled_array, num_features}')
    areas1 = []
    perimeters1 = []

    # 遍历每个连通区域
    for region_slice in find_objects(labeled_array):
        region = labeled_array[region_slice]
        area = np.sum(region > 0)
        perimeter = calculate_perimeter()
        areas1.append(area)
        perimeters1.append(perimeter)
    print(f'sort areas, len:{len(areas1)}:\n{sorted(areas1)}')
    return areas1, perimeters1
相关推荐
Gyoku Mint2 分钟前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
zzywxc7875 分钟前
AI大模型的技术演进、流程重构、行业影响三个维度的系统性分析
人工智能·重构
点控云5 分钟前
智能私域运营中枢:从客户视角看 SCRM 的体验革新与价值重构
大数据·人工智能·科技·重构·外呼系统·呼叫中心
zhaoyi_he13 分钟前
多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
人工智能·重构
葫三生1 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336392 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
拓端研究室3 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安5 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
美狐美颜sdk5 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程6 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习