视觉图像面积计算

在图像处理和计算机视觉中,计算对象面积的常见方法有两种:使用四邻域标记算法和使用轮廓计算。每种方法在不同情况下有各自的优缺点。

  1. 四邻域标记算法

    • 优点
      • 简单易实现。
      • 能够处理带有孔洞的复杂区域(只要孔洞不影响连通性判断)。
    • 缺点
      • 对于边缘不清晰或有噪声的图像,可能会导致面积计算误差。
      • 依赖于图像分辨率和阈值选择的精度。
  2. 轮廓计算

    • 优点
      • 通常更精确,因为它直接使用对象的边缘来计算面积。
      • 适合处理边界清晰的对象。
      • 可以在亚像素级别计算面积,提供更高精度。
    • 缺点
      • 计算复杂度相对较高,特别是在图像边缘检测和轮廓提取步骤。
      • 对于有噪声的图像,边缘检测可能会失败或产生错误的轮廓。

更准确的选择

通常情况下,使用轮廓计算面积更为准确,特别是在以下情况下:

  • 图像边缘清晰。
  • 需要高精度的面积计算。
  • 可以处理复杂形状和多种连通区域。

分别代码:

1 轮廓

python 复制代码
# 获取连通域的边界和标签   # 查看各个轮廓
    contours, _ = cv2.findContours(gray_frame_seg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # 筛选出面积较小的轮廓
    option_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > area_threshold]
    logging.info(f'count: {len(contours)}, option contours: {len(option_contours)}')
    # 初始化要计算的参数
    num_contours = len(option_contours)
    areas = np.zeros(num_contours)

2 四邻域标记算法

python 复制代码
    def calculate_perimeter():
        """计算连通区域的周长"""
        contours, _ = cv2.findContours(region.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        perimeter = 0
        for contour in contours:
            perimeter += cv2.arcLength(contour, True)
        return perimeter

    # 找到连通区域并计算每个区域的面积和周长
    labeled_array, num_features = label(gray_frame_seg)
    print(f'labeled_array, num_features:{labeled_array, num_features}')
    areas1 = []
    perimeters1 = []

    # 遍历每个连通区域
    for region_slice in find_objects(labeled_array):
        region = labeled_array[region_slice]
        area = np.sum(region > 0)
        perimeter = calculate_perimeter()
        areas1.append(area)
        perimeters1.append(perimeter)
    print(f'sort areas, len:{len(areas1)}:\n{sorted(areas1)}')
    return areas1, perimeters1
相关推荐
富唯智能30 分钟前
移动+协作+视觉:开箱即用的下一代复合机器人如何重塑智能工厂
人工智能·工业机器人·复合机器人
Antonio9151 小时前
【图像处理】图像的基础几何变换
图像处理·人工智能·计算机视觉
新加坡内哥谈技术2 小时前
Perplexity AI 的 RAG 架构全解析:幕后技术详解
人工智能
武子康3 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
智驱力人工智能3 小时前
基于视觉分析的人脸联动使用手机检测系统 智能安全管理新突破 人脸与手机行为联动检测 多模态融合人脸与手机行为分析模型
算法·安全·目标检测·计算机视觉·智能手机·视觉检测·边缘计算
Sirius Wu4 小时前
深入浅出:Tongyi DeepResearch技术解读
人工智能·语言模型·langchain·aigc
2301_764441334 小时前
水星热演化核幔耦合数值模拟
python·算法·数学建模
循环过三天4 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
忙碌5444 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running4 小时前
智能变电巡检:AI检测新突破
人工智能