视觉图像面积计算

在图像处理和计算机视觉中,计算对象面积的常见方法有两种:使用四邻域标记算法和使用轮廓计算。每种方法在不同情况下有各自的优缺点。

  1. 四邻域标记算法

    • 优点
      • 简单易实现。
      • 能够处理带有孔洞的复杂区域(只要孔洞不影响连通性判断)。
    • 缺点
      • 对于边缘不清晰或有噪声的图像,可能会导致面积计算误差。
      • 依赖于图像分辨率和阈值选择的精度。
  2. 轮廓计算

    • 优点
      • 通常更精确,因为它直接使用对象的边缘来计算面积。
      • 适合处理边界清晰的对象。
      • 可以在亚像素级别计算面积,提供更高精度。
    • 缺点
      • 计算复杂度相对较高,特别是在图像边缘检测和轮廓提取步骤。
      • 对于有噪声的图像,边缘检测可能会失败或产生错误的轮廓。

更准确的选择

通常情况下,使用轮廓计算面积更为准确,特别是在以下情况下:

  • 图像边缘清晰。
  • 需要高精度的面积计算。
  • 可以处理复杂形状和多种连通区域。

分别代码:

1 轮廓

python 复制代码
# 获取连通域的边界和标签   # 查看各个轮廓
    contours, _ = cv2.findContours(gray_frame_seg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # 筛选出面积较小的轮廓
    option_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > area_threshold]
    logging.info(f'count: {len(contours)}, option contours: {len(option_contours)}')
    # 初始化要计算的参数
    num_contours = len(option_contours)
    areas = np.zeros(num_contours)

2 四邻域标记算法

python 复制代码
    def calculate_perimeter():
        """计算连通区域的周长"""
        contours, _ = cv2.findContours(region.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        perimeter = 0
        for contour in contours:
            perimeter += cv2.arcLength(contour, True)
        return perimeter

    # 找到连通区域并计算每个区域的面积和周长
    labeled_array, num_features = label(gray_frame_seg)
    print(f'labeled_array, num_features:{labeled_array, num_features}')
    areas1 = []
    perimeters1 = []

    # 遍历每个连通区域
    for region_slice in find_objects(labeled_array):
        region = labeled_array[region_slice]
        area = np.sum(region > 0)
        perimeter = calculate_perimeter()
        areas1.append(area)
        perimeters1.append(perimeter)
    print(f'sort areas, len:{len(areas1)}:\n{sorted(areas1)}')
    return areas1, perimeters1
相关推荐
程序员ken3 小时前
深入理解大语言模型(8) 使用 LangChain 开发应用程序之上下文记忆
人工智能·python·语言模型·langchain
Tadas-Gao3 小时前
深度学习与机器学习的知识路径:从必要基石到独立范式
人工智能·深度学习·机器学习·架构·大模型·llm
TTGGGFF3 小时前
从“千问送奶茶”看AI Agent落地:火爆、崩塌与进化方向
人工智能
唐梓航-求职中3 小时前
编程大师-技术-算法-leetcode-1472. 设计浏览器历史记录
算法·leetcode
_OP_CHEN3 小时前
【算法基础篇】(五十八)线性代数之高斯消元法从原理到实战:手撕模板 + 洛谷真题全解
线性代数·算法·蓝桥杯·c/c++·线性方程组·acm/icpc·高斯消元法
OPEN-Source3 小时前
大模型实战:把自定义 Agent 封装成一个 HTTP 服务
人工智能·agent·deepseek
不懒不懒3 小时前
【从零开始:PyTorch实现MNIST手写数字识别全流程解析】
人工智能·pytorch·python
zhangshuang-peta3 小时前
从REST到MCP:为何及如何为AI代理升级API
人工智能·ai agent·mcp·peta
helloworld也报错?3 小时前
基于CrewAI创建一个简单的智能体
人工智能·python·vllm
wukangjupingbb3 小时前
Gemini 3和GPT-5.1在多模态处理上的对比
人工智能·gpt·机器学习