pytorch自适应的调整特征图大小

文章目录

代码

256×256 --> 224×224

python 复制代码
import torch
import torch.nn as nn

# 假设 x 是你的特征图,形状为 (4, 32, 256, 256)
x = torch.randn(4, 32, 256, 256)

# 方法一:使用自适应平均池化调整大小
adaptive_avg_pool = nn.AdaptiveAvgPool2d((224, 224))
x_pooled_avg = adaptive_avg_pool(x)

print(x_pooled_avg.shape)  # 输出形状应该是 (4, 32, 224, 224)

# 方法二:使用自适应最大池化调整大小
adaptive_max_pool = nn.AdaptiveMaxPool2d((224, 224))
x_pooled_max = adaptive_max_pool(x)

print(x_pooled_max.shape)  # 输出形状应该是 (4, 32, 224, 224)

224×224 --> 256×256

python 复制代码
import torch
import torch.nn as nn

# 创建一个随机的特征图,形状为 (4, 32, 224, 224)
feature_map = torch.randn(4, 32, 224, 224)

# 定义双线性插值的上采样层
upsample = nn.Upsample(size=(256, 256), mode='bilinear', align_corners=False)

# 应用上采样
upsampled_feature_map = upsample(feature_map)
print(upsampled_feature_map.shape)  # 输出应为 (4, 32, 256, 256)
相关推荐
诚威_lol_中大努力中43 分钟前
关于pytorch3d的安装
人工智能·pytorch·python
GISer_Jing1 小时前
神经网络、深度学习、卷积神经网络
python
onejason1 小时前
深度解析:利用Python爬虫获取亚马逊商品详情
前端·python
小王子10241 小时前
数据结构与算法Python版 二叉查找树
数据结构·python·算法·二叉查找树
编程阿布1 小时前
Python基础——多线程编程
java·数据库·python
又蓝2 小时前
使用 Python 操作 MySQL 数据库的实用工具类:MySQLHandler
数据库·python·mysql
dundunmm2 小时前
机器学习之pandas
人工智能·python·机器学习·数据挖掘·pandas
好学近乎知o2 小时前
常用的Django模板语言
python·django·sqlite
小火炉Q2 小时前
16 循环语句——for循环
人工智能·python·网络安全
segwyang2 小时前
Maven 项目模板
java·python·maven