pytorch自适应的调整特征图大小

文章目录

代码

256×256 --> 224×224

python 复制代码
import torch
import torch.nn as nn

# 假设 x 是你的特征图,形状为 (4, 32, 256, 256)
x = torch.randn(4, 32, 256, 256)

# 方法一:使用自适应平均池化调整大小
adaptive_avg_pool = nn.AdaptiveAvgPool2d((224, 224))
x_pooled_avg = adaptive_avg_pool(x)

print(x_pooled_avg.shape)  # 输出形状应该是 (4, 32, 224, 224)

# 方法二:使用自适应最大池化调整大小
adaptive_max_pool = nn.AdaptiveMaxPool2d((224, 224))
x_pooled_max = adaptive_max_pool(x)

print(x_pooled_max.shape)  # 输出形状应该是 (4, 32, 224, 224)

224×224 --> 256×256

python 复制代码
import torch
import torch.nn as nn

# 创建一个随机的特征图,形状为 (4, 32, 224, 224)
feature_map = torch.randn(4, 32, 224, 224)

# 定义双线性插值的上采样层
upsample = nn.Upsample(size=(256, 256), mode='bilinear', align_corners=False)

# 应用上采样
upsampled_feature_map = upsample(feature_map)
print(upsampled_feature_map.shape)  # 输出应为 (4, 32, 256, 256)
相关推荐
江木1231 小时前
NAFNet:Simple Baselines for Image Restoration
论文阅读·图像处理·深度学习
网络安全(king)1 小时前
基于java社交网络安全的知识图谱的构建与实现
开发语言·网络·深度学习·安全·web安全·php
Ronin-Lotus1 小时前
深度学习篇---Opencv中的机器学习和深度学习
python·深度学习·opencv·机器学习
信阳农夫2 小时前
Django解析跨域问题
后端·python·django
ylfhpy2 小时前
Manus 演示案例:自动完成小说编写并生成最终 PDF 文档
人工智能·深度学习·机器学习·自然语言处理·manus
m0_371356152 小时前
【测试语言基础篇】Python基础之List列表
开发语言·python·list
天行者@3 小时前
卷积神经网络(笔记01)
人工智能·深度学习·cnn
大0马浓3 小时前
训练大模型LLM选择哪种开发语言最好
人工智能·python·训练
PNP机器人3 小时前
Franka机器人ROS 2 发布:赋能机器人研究和行业应用
人工智能·深度学习·机器人·ros·franka fr3