Databend db-archiver 数据归档压测报告

Databend db-archiver 数据归档压测报告

  • 背景
  • 准备工作
      • [Create target databend table](#Create target databend table)
      • [启动 small warehouse](#启动 small warehouse)
      • [准备北京区阿里云 ECS](#准备北京区阿里云 ECS)
      • [db-archiver 的配置文件](#db-archiver 的配置文件)
      • 准备一亿条源表数据
      • 开始压测

背景

本次压测目标为使用 db-archiver 从 MySQL 归档数据到 Databend Cloud, 归档的数据量为一亿条数据。

准备工作

Create target databend table

首先到 Databend Cloud worksheet 中根据源表结构创建目标表:

复制代码
CREATE TABLE test_table1 (id INT64, field1 VARCHAR(255), field2 VARCHAR(255), field3 VARCHAR(255), field4 VARCHAR(255), field5 VARCHAR(255), field6 VARCHAR(255), field7 VARCHAR(255), field8 VARCHAR(255), field9 VARCHAR(255), field10 VARCHAR(255), field11 VARCHAR(255), field12 VARCHAR(255), field13 VARCHAR(255), field14 VARCHAR(255), field15 VARCHAR(255), field16 VARCHAR(255), field17 VARCHAR(255), field18 VARCHAR(255), field19 VARCHAR(255), field20 VARCHAR(255));

总共 21 个字段,其中 id 在源表中自增主键。

启动 small warehouse

到 Databend Cloud 上启动 small warehouse 用作同步目标,本次我们选择 Databend Cloud的阿里云北京区。

准备北京区阿里云 ECS

为了减小跨区域的网络延迟影响,我们同样选择开启一个北京区的 ECS 作为我们同步任务执行的地方。

db-archiver 的配置文件

复制代码
{
  "sourceHost": "127.0.0.1",
  "sourcePort": 3306,
  "sourceUser": "root",
  "sourcePass": "",
  "sourceDB": "mydb",
  "sourceTable": "test_table1",
  "sourceQuery": "select * from mydb.test_table1",
  "sourceWhereCondition": "id < 100000000",
  "sourceSplitKey": "id",
  "databendDSN": "https://user:password@tnf34b0rm--elt-wh-s.gw.aliyun-cn-beijing.default.databend.cn:443",
  "databendTable": "default.test_table1",
  "batchSize": 50000,
  "batchMaxInterval": 30,
  "copyPurge":true,
  "copyForce":true,
  "disableVariantCheck": false,
  "userStage": "~",
  "deleteAfterSync": false,
  "maxThread": 20
}

更多详细配置可以参考:https://github.com/databendcloud/db-archiver?tab=readme-ov-file#parameter-references

准备一亿条源表数据

往源表中插入一亿条数据。

开始压测

所以这里同步的前置条件为:

  • 测试区域:databend cloud cn 北京区
  • Databend warehouse 配置:small warehouse
  • 运行机器配置: 8c16g
  • 运行机器所在区域:阿里云北京区
  • 一亿条数据-MySQL
    这里压测三波,每次的压测的结果以及配置如下:
开启线程 BatchSize 完成时间
1 20000 85min
10 40000 13min
10 50000 11.5min
20 60000 18min

可以看到 db-archiver 的线程数比较重要,但线程也不能无限开大,要根据所在机器的具体配置调优。并且 BatchSize 也不是越大越好,这里推荐 10 个线程配合 40000 的 batchSize。具体情况可以由客户自行测试调优。

相关推荐
poemyang7 小时前
十年大厂员工终明白:MySQL性能优化的尽头,是对B+树的极致理解
mysql·pagecache·顺序i/o·局部性原理·b tree·b+ tree
天宇_任9 小时前
Mysql数据库迁移到GaussDB注意事项
数据库·mysql·gaussdb
花花无缺15 小时前
MySQL 的存储引擎-InnoDB 和 MyISAM的对比
mysql
苏琢玉15 小时前
如何让同事自己查数据?写一个零依赖 PHP SQL 查询工具就够了
mysql·php
代码的余温16 小时前
MySQL性能优化:10个关键参数调整指南
数据库·mysql·性能优化
花花无缺18 小时前
mysql常用的基本函数
mysql
柏油18 小时前
可视化 MySQL binlog 监听方案
数据库·后端·mysql
柏油20 小时前
MySQL 字符集 utf8 与 utf8mb4
数据库·后端·mysql
我科绝伦(Huanhuan Zhou)20 小时前
异构数据库兼容力测评:KingbaseES 与 MySQL 的语法・功能・性能全场景验证解析
数据库·mysql
BTU_YC20 小时前
docker compose部署mysql
mysql·adb·docker