TF-IDF计算过程一步步推导详解含代码演示

相关概念

TF-IDF

TF-IDF(Term Frequency--Inverse Document Frequency)是一种用于资讯检索与文本挖掘的常用加权技术。TF-IDF是一种统计方法,用以评估一个字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。

TF

tf(term frequency:指的是某一个给定的词语在该文件中出现的次数,这个数字通常会被归一化(一般是词频除以该文件总词数),以防止它偏向长的文件。

IDF

idf (inverse document frequency):反应了一个词在所有文本(整个文档)中出现的频率,如果一个词在很多的文本中出现,那么它的idf值应该低,而反过来如果一个词在比较少的文本中出现,那么它的idf值应该高。

N

N代表文档的总数。

W

W是某个单词在几个文档里出现过,同一一个文档出行多次,计为1。

代码示例

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd
# 定义更复杂的文档集
complex_documents = [
    "The quick brown fox jumps over the lazy dog.",
    "The brown fox is quick and the brown dog is lazy.",
    "The sky is blue and beautiful.",
    "Look at the bright blue sky!",
    "The quick brown dog jumps over the lazy fox."
]
# 创建TF-IDF模型
complex_vectorizer = TfidfVectorizer(smooth_idf=True)
#将文档转换为TF-IDF矩阵
complex_tfidf_matrix = complex_vectorizer.fit_transform(complex_documents)
#print(complex_tfidf_matrix)
#获取特征名称
feature_names = complex_vectorizer.get_feature_names_out()
#将TF-IDF矩阵转换为DataFrame
complex_tfidf_df = pd.DataFrame(complex_tfidf_matrix.toarray(), columns=feature_names)
#打印 TF-IDF矩阵
#print(complex_tfidf_df)
#TF-IDF矩阵保存成csv文件
complex_tfidf_df.to_csv('./output/complex_tfidf_matrix.csv', index=True)

计算过程详解

原始文档见下:

The quick brown fox jumps over the lazy dog

The brown fox is quick and the brown dog is lazy

The sky is blue and beautiful

Look at the bright blue sky

The quick brown dog jumps over the lazy fox

确定N

不难看出文档总共有5份,所以这里的N为5.

确定W

我们以"Look at the bright blue sky"为例来演示:

这句话里每个单词在该文档里都是唯一的,所以每个单词的TF = 1/6。

计算每个单词的IDF值

以单词blue为例,它总共在两个文档里出现,所以W=2,所以其IDF=ln((1+5)/(1+2))+1,其它以此类推。

|--------|--------------------------------------------------------|
| 单词 | IDF值 |
| look | ln((1+5)/(1+1))+1=2.0986122886681096913952452369225 |
| at | ln((1+5)/(1+1))+1=2.0986122886681096913952452369225 |
| the | ln((1+5)/(1+5))+1 = 1 |
| bright | ln((1+5)/(1+1))+1=2.0986122886681096913952452369225 |
| blue | ln((1+5)/(1+2))+1 = 1.69314718055994530941723212145818 |
| sky | ln((1+5)/(1+2))+1 = 1.69314718055994530941723212145818 |

计算每个单词的TF-IDF值

即上述每个单元格*(1/6)

|--------|---------------------|
| 单词 | tfidf值 |
| look | 0.34976871477801824 |
| at | 0.34976871477801824 |
| the | 0.16666666666666666 |
| bright | 0.34976871477801824 |
| blue | 0.2821911967599909 |
| sky | 0.2821911967599909 |

TF-IDF值进行归一化

计算这组单词TF-IDF的平方根

(0.34976871477801824**2 + 0.34976871477801824**2 + 0.16666666666666666**2 + 0.34976871477801824**2 + 0.2821911967599909**2+ 0.2821911967599909**2)**0.5

= 0.7443493684741389

生成最终TF-IDF值

|--------|------------------------------------------------------------|
| 单词 | 归一化后TFIDF值 |
| look | 0.34976871477801824/0.7443493684741389=0.4698985847130068 |
| at | 0.34976871477801824/0.7443493684741389=0.4698985847130068 |
| the | 0.16666666666666666/0.7443493684741389=0.22390919335139758 |
| bright | 0.34976871477801824/0.7443493684741389=0.4698985847130068 |
| blue | 0.2821911967599909/0.7443493684741389=0.3791112194243705 |
| sky | 0.2821911967599909/0.7443493684741389=0.3791112194243705 |

对比sklearn里的结果

相关推荐
Data_agent2 分钟前
Python编程实战:从类与对象到设计优雅
爬虫·python
Swizard12 分钟前
别再迷信“准确率”了!一文读懂 AI 图像分割的黄金标尺 —— Dice 系数
python·算法·训练
麦麦鸡腿堡16 分钟前
Java_类的加载
java·开发语言
我命由我1234516 分钟前
VSCode - Prettier 配置格式化的单行长度
开发语言·前端·ide·vscode·前端框架·编辑器·学习方法
JIngJaneIL25 分钟前
基于java + vue校园快递物流管理系统(源码+数据库+文档)
java·开发语言·前端·数据库·vue.js
超级大只老咪29 分钟前
数组的正向存储VS反向存储(Java)
java·开发语言·python
柏木乃一29 分钟前
进程(2)进程概念与基本操作
linux·服务器·开发语言·性能优化·shell·进程
毕设源码-赖学姐34 分钟前
【开题答辩全过程】以 基于JSP的物流信息网的设计与实现为例,包含答辩的问题和答案
java·开发语言
leo__52035 分钟前
基于LDA的数据降维:原理与MATLAB实现
开发语言·matlab·信息可视化
asdfg125896342 分钟前
JS中的闭包应用
开发语言·前端·javascript