N5 使用Gensim库训练Word2Vec模型

前言

这周学习训练一个Word2Vec模型,并进行一些基本的词向量操作。

Word2Vec 模型

Word2Vec 是一种基于神经网络的词向量表示方法,通过从大规模文本语料中学习到的词向量,捕捉词汇之间的语义关系。

训练一个Word2Vec模型

1. 导入所需的库

python 复制代码
import jieba
import jieba.analyse
import chardet
  • jieba用于中文分词。
  • chardet用于检测文件编码。
  • jieba.analyse用于关键词提取(未在本代码中使用)。

2. 添加自定义词频

python 复制代码
jieba.suggest_freq('沙瑞金', True)
# ... (其他类似的词)
jieba.suggest_freq('赵德汉', True)
  • suggest_freq方法用于调整词频,使得分词器能够更好地识别这些特定词汇。

3. 读取和分词处理文本文件

python 复制代码
result_cut = []
with open('./in_the_name_of_people.txt', 'rb') as f:
    raw_data = f.read()
    encoding = chardet.detect(raw_data)['encoding']
    lines = raw_data.decode(encoding).splitlines()
    for line in lines:
        result_cut.append(list(jieba.cut(line)))
  • 以二进制方式读取文本文件内容。
  • 使用chardet检测文件编码,并进行解码。
  • 将文本按行分割,并对每行使用jieba.cut进行分词,结果存入result_cut列表。

4. 去除停用词

python 复制代码
stopwords_list = [",", "。", "\n", "\u3000", " ", ":", "!", "?", "..."]

def remove_stopwords(ls):
    return [word for word in ls if word not in stopwords_list]

result_stop = [remove_stopwords(x) for x in result_cut if remove_stopwords(x)]
  • 定义一个停用词列表,包括常见的标点符号和空格。
  • remove_stopwords函数用于从分词结果中去除停用词。
  • 对分词结果result_cut应用remove_stopwords函数,得到result_stop

5. 训练Word2Vec模型

python 复制代码
from gensim.models import Word2Vec

model = Word2Vec(result_stop, 
                 vector_size=100, 
                 window=5, 
                 min_count=1)
  • 使用gensim库的Word2Vec模型训练词向量。
  • vector_size设置词向量的维度为100。
  • window设置上下文窗口大小为5。
  • min_count设置为1,即出现次数少于1次的词语将被忽略。

6. 计算词语相似度

python 复制代码
print(model.wv.similarity('沙瑞金', '季昌明'))
print(model.wv.similarity('沙瑞金', '田国富'))
  • 使用similarity方法计算两个词语之间的相似度。

7. 找出最相似的词

python 复制代码
for e in model.wv.most_similar(positive=['沙瑞金'], topn=5):
    print(e[0], e[1])
  • 使用most_similar方法找出与'沙瑞金'最相似的5个词语及其相似度。

8. 找出不匹配的词

python 复制代码
odd_word = model.wv.doesnt_match(["苹果", "香蕉", "橙子", "书"])
print(f"在这组词汇中不匹配的词汇:{odd_word}")
  • 使用doesnt_match方法找出列表中最不符合其余词语的词语。

9. 获取词频

python 复制代码
word_frequency = model.wv.get_vecattr("沙瑞金", "count")
print(f"沙瑞金:{word_frequency}")
  • 使用get_vecattr方法获取词语'沙瑞金'在语料中的出现次数。

结果

总结

通过Word2Vec模型,我们可以有效地捕捉词汇之间的语义关系,应用在自然语言处理任务中如文本分类、聚类和推荐系统等。

相关推荐
学历真的很重要6 小时前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友6 小时前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何6 小时前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何6 小时前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
苍何7 小时前
越来越对 AI 做的 PPT 敬佩了!(附7大用法)
人工智能
苍何7 小时前
超全Nano Banana Pro 提示词案例库来啦,小白也能轻松上手
人工智能
阿杰学AI8 小时前
AI核心知识39——大语言模型之World Model(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·世界模型·world model·sara
智慧地球(AI·Earth)8 小时前
Vibe Coding:你被取代了吗?
人工智能
大、男人8 小时前
DeepAgent学习
人工智能·学习
测试人社区—66799 小时前
提升测试覆盖率的有效手段剖析
人工智能·学习·flutter·ui·自动化·测试覆盖率