N5 使用Gensim库训练Word2Vec模型

前言

这周学习训练一个Word2Vec模型,并进行一些基本的词向量操作。

Word2Vec 模型

Word2Vec 是一种基于神经网络的词向量表示方法,通过从大规模文本语料中学习到的词向量,捕捉词汇之间的语义关系。

训练一个Word2Vec模型

1. 导入所需的库

python 复制代码
import jieba
import jieba.analyse
import chardet
  • jieba用于中文分词。
  • chardet用于检测文件编码。
  • jieba.analyse用于关键词提取(未在本代码中使用)。

2. 添加自定义词频

python 复制代码
jieba.suggest_freq('沙瑞金', True)
# ... (其他类似的词)
jieba.suggest_freq('赵德汉', True)
  • suggest_freq方法用于调整词频,使得分词器能够更好地识别这些特定词汇。

3. 读取和分词处理文本文件

python 复制代码
result_cut = []
with open('./in_the_name_of_people.txt', 'rb') as f:
    raw_data = f.read()
    encoding = chardet.detect(raw_data)['encoding']
    lines = raw_data.decode(encoding).splitlines()
    for line in lines:
        result_cut.append(list(jieba.cut(line)))
  • 以二进制方式读取文本文件内容。
  • 使用chardet检测文件编码,并进行解码。
  • 将文本按行分割,并对每行使用jieba.cut进行分词,结果存入result_cut列表。

4. 去除停用词

python 复制代码
stopwords_list = [",", "。", "\n", "\u3000", " ", ":", "!", "?", "..."]

def remove_stopwords(ls):
    return [word for word in ls if word not in stopwords_list]

result_stop = [remove_stopwords(x) for x in result_cut if remove_stopwords(x)]
  • 定义一个停用词列表,包括常见的标点符号和空格。
  • remove_stopwords函数用于从分词结果中去除停用词。
  • 对分词结果result_cut应用remove_stopwords函数,得到result_stop

5. 训练Word2Vec模型

python 复制代码
from gensim.models import Word2Vec

model = Word2Vec(result_stop, 
                 vector_size=100, 
                 window=5, 
                 min_count=1)
  • 使用gensim库的Word2Vec模型训练词向量。
  • vector_size设置词向量的维度为100。
  • window设置上下文窗口大小为5。
  • min_count设置为1,即出现次数少于1次的词语将被忽略。

6. 计算词语相似度

python 复制代码
print(model.wv.similarity('沙瑞金', '季昌明'))
print(model.wv.similarity('沙瑞金', '田国富'))
  • 使用similarity方法计算两个词语之间的相似度。

7. 找出最相似的词

python 复制代码
for e in model.wv.most_similar(positive=['沙瑞金'], topn=5):
    print(e[0], e[1])
  • 使用most_similar方法找出与'沙瑞金'最相似的5个词语及其相似度。

8. 找出不匹配的词

python 复制代码
odd_word = model.wv.doesnt_match(["苹果", "香蕉", "橙子", "书"])
print(f"在这组词汇中不匹配的词汇:{odd_word}")
  • 使用doesnt_match方法找出列表中最不符合其余词语的词语。

9. 获取词频

python 复制代码
word_frequency = model.wv.get_vecattr("沙瑞金", "count")
print(f"沙瑞金:{word_frequency}")
  • 使用get_vecattr方法获取词语'沙瑞金'在语料中的出现次数。

结果

总结

通过Word2Vec模型,我们可以有效地捕捉词汇之间的语义关系,应用在自然语言处理任务中如文本分类、聚类和推荐系统等。

相关推荐
苍何15 分钟前
3个月圈粉百万,这个AI应用在海外火了
人工智能
用户51914958484517 分钟前
使用Python ConfigParser解析INI配置文件完全指南
人工智能·aigc
吴佳浩22 分钟前
为什么"骂"大模型,它反而更聪明了?
人工智能·llm
Font Tian25 分钟前
GPT-oss + vLLM + LobalChat
人工智能·gpt·llm
weixin_466836 分钟前
Python编程之面向对象
开发语言·人工智能·python
连线Insight42 分钟前
竞逐AI内容,爱奇艺先出手了
大数据·人工智能
杭州泽沃电子科技有限公司1 小时前
钢铁厂运输设备在线监测:构建智能工厂的安全与效率基石
运维·人工智能·智能监测
董厂长1 小时前
阅读:REACT: SYNERGIZING REASONING AND ACTING INLANGUAGE MODELS(在语言模型中协同推理与行动)
人工智能·语言模型·agent·react
技术闲聊DD1 小时前
深度学习(5)-PyTorch 张量详细介绍
人工智能·pytorch·深度学习
Lucas555555551 小时前
多模态RAG进阶:基于GPT-4V+LangGraph的下一代智能体系统完全指南
人工智能