YOLO之boxes小记

python 复制代码
import cv2
from ultralytics import YOLO
# 加载模型
model = YOLO(model='yolov8n.pt')
results = model(source='animal.jpg')

result = results[0]
img = result.plot()
from matplotlib import pyplot as plt
# matplotlib :rgb模式
# cv:bgr模式
plt.imshow(X=img[:,:,::-1])
python 复制代码
result.boxes



```python
"""
# 类别
cls: tensor([22., 20., 23., 20., 20.])
# 置信度 也就是概率
conf: tensor([0.8806, 0.8598, 0.5866, 0.5551, 0.3515])
data: tensor([[2.4926e+01, 5.1402e+02, 3.7411e+02, 7.9772e+02, 8.8055e-01, 2.2000e+01],
        [3.2387e+02, 3.8592e+02, 7.2567e+02, 8.0409e+02, 8.5977e-01, 2.0000e+01],
        [5.9173e+02, 2.6204e+02, 8.0608e+02, 7.7721e+02, 5.8656e-01, 2.3000e+01],
        [7.1596e+02, 6.3707e+02, 9.0578e+02, 8.5622e+02, 5.5513e-01, 2.0000e+01],
        [7.2943e+02, 5.2940e+02, 1.1668e+03, 7.8796e+02, 3.5151e-01, 2.0000e+01]])
id: None
is_track: False
orig_shape: (897, 1200)
shape: torch.Size([5, 6])
# 中心点坐标 (x,y) ,w宽 h高  n是规范化以后的数据,所有跟x相关的除以宽度,所有与y相关的除以高度,相当于归一化了 (相对坐标是用的比较多的)
xywh: tensor([[199.5182, 655.8711, 349.1838, 283.6943],
        [524.7690, 595.0039, 401.7979, 418.1656],
        [698.9015, 519.6245, 214.3517, 515.1679],
        [810.8722, 746.6467, 189.8149, 219.1466],
        [948.1376, 658.6791, 437.4136, 258.5655]])
xywhn: tensor([[0.1663, 0.7312, 0.2910, 0.3163],
        [0.4373, 0.6633, 0.3348, 0.4662],
        [0.5824, 0.5793, 0.1786, 0.5743],
        [0.6757, 0.8324, 0.1582, 0.2443],
        [0.7901, 0.7343, 0.3645, 0.2883]])
# 这个是左上角坐标(x,y)和右下角坐标(x,y)        
xyxy: tensor([[  24.9263,  514.0239,  374.1101,  797.7183],
        [ 323.8700,  385.9211,  725.6679,  804.0867],
        [ 591.7256,  262.0406,  806.0774,  777.2085],
        [ 715.9648,  637.0734,  905.7797,  856.2200],
        [ 729.4308,  529.3964, 1166.8444,  787.9619]])
xyxyn: tensor([[0.0208, 0.5730, 0.3118, 0.8893],
        [0.2699, 0.4302, 0.6047, 0.8964],
        [0.4931, 0.2921, 0.6717, 0.8665],
        [0.5966, 0.7102, 0.7548, 0.9545],
        [0.6079, 0.5902, 0.9724, 0.8784]])
"""
复制代码
相关推荐
Monkey的自我迭代4 分钟前
深度学习入门第一课——神经网络实现手写数字识别
人工智能·深度学习·神经网络
Ronin-Lotus7 小时前
深度学习篇--- ResNet-18
人工智能·深度学习·resnet
钓了猫的鱼儿9 小时前
无人机航拍数据集|第20期 无人机公路损伤目标检测YOLO数据集3771张yolov11/yolov8/yolov5可训练
yolo·目标检测·无人机·猫脸码客·无人机航拍数据集·无人机公路损伤目标检测数据集
钓了猫的鱼儿9 小时前
无人机航拍数据集|第27期 无人机交通目标检测YOLO数据集3717张yolov11/yolov8/yolov5可训练
人工智能·yolo·目标检测
赴33510 小时前
神经网络和深度学习介绍
人工智能·深度学习·反向传播
2501_9248785912 小时前
强光干扰下漏检率↓78%!陌讯动态决策算法在智慧交通违停检测的实战优化
大数据·深度学习·算法·目标检测·视觉检测
无风听海14 小时前
行向量和列向量在神经网络应用中的选择
人工智能·深度学习·神经网络·行向量·列向量
能力越小责任越小YA15 小时前
服务器(Linux)新账户搭建Pytorch深度学习环境
人工智能·pytorch·深度学习·环境搭建
A7bert77715 小时前
【YOLOv5部署至RK3588】模型训练→转换RKNN→开发板部署
c++·人工智能·python·深度学习·yolo·目标检测·机器学习
Coovally AI模型快速验证16 小时前
YOLOv8-SMOT:基于切片辅助训练与自适应运动关联的无人机视角小目标实时追踪框架
人工智能·深度学习·yolo·计算机视觉·目标跟踪·无人机