OpenCV教程02:图像处理系统1.0(翻转+形态学+滤波+缩放+旋转)

-------------OpenCV教程集合-------------

Python教程99:一起来初识OpenCV(一个跨平台的计算机视觉库)

OpenCV教程01:图像的操作(读取+显示+保存+属性+获取和修改像素值)

OpenCV教程02:图像处理系统1.0(翻转+形态学+滤波+缩放+旋转)

OpenCV教程03:绘制图形(线段、矩形、圆形、椭圆、多边形、箭头线)+水印文本

1.准备一张要输入的图像素材,没有的话也可以拿下面的图片练习一下,大小为250250或300300。基于OpenCV+tkinter的图像处理系统1.0,主要功能,翻转+形态学+滤波+缩放+旋转的示例用法,代码已跑亲测有效。感兴趣的朋友,自己学习一下。当然运行该代码,一些必要的第三方安装包是必不可少的,自己看着源码,逐一模块安装一下。

2.py源码不足的地方:

a.仅支持png和jpe的图片格式,如果你要添加其他的图片格式,自己在源码里面的通用对话框增加一些格式,默认是显示png格式。

b.没有办法,保存生成的新图片,当然你可以参考,历史pillow教程博文中,tk是如何显示和保存图片的。

Pillow教程10:设计博文的文字背景封面图,再也不担心找不到素材了

c.显示图片的窗口大小是固定的,输入的图像最好为250*250,这样刚好显示。如果你要显示更大的,自己调一下tk窗口组件的大小。

运行后的效果

python 复制代码
# -*- coding: utf-8 -*-
# @Author : 小红牛
# 微信公众号:WdPython
import tkinter.messagebox as messagebox
import tkinter as tk
from tkinter import ttk
from PIL import Image, ImageTk
import os
from tkinter.filedialog import askopenfilename, asksaveasfilename
import cv2
import numpy as np

file_path = os.path.dirname(__file__)
test_file_path = file_path + os.sep + 'example.png'

WIN_WIDTH = 700
WIN_HEIGHT = 400


class Image_sys():
    def __init__(self):
        self.root = tk.Tk()
        self.root.geometry('700x400+80+80')
        self.root.title('图像处理系统1.0------微信公众号:WdPython')  # 设置窗口标题
        # self.root.iconbitmap('icon/icon.ico')  # 设置窗口图标
        # scnWidth, scnHeight = self.root.maxsize()
        # 屏幕中心居中
        # center = '%dx%d+%d+%d' % (WIN_WIDTH, WIN_HEIGHT, (scnWidth - WIN_WIDTH) / 2, (scnHeight - WIN_HEIGHT) / 2)
        # print(center)
        # 设置窗口的大小宽x高+偏移量
        # self.root.geometry(center)
        # 调用方法会禁止根窗体改变大小
        self.root.resizable(False, False)

        menubar = tk.Menu(self.root)  # 创建菜单栏 (Menu)
        self.root.config(menu=menubar)

        # 创建文件下拉菜单
        # 文件菜单下 tearoff=0 表示有没有分隔符,默认为有分隔符
        file_menu = tk.Menu(menubar, tearoff=0)
        # 为顶级菜单实例添加菜单,并级联相应的子菜单实例
        menubar.add_cascade(label="文件", menu=file_menu)
        file_menu.add_command(label="打开测试文件", command=self.open_test_file)
        file_menu.add_command(label="打开自定义文件", command=self.open_file)
        file_menu.add_command(label="复原", command=self.recover)
        file_menu.add_command(label="清除", command=self.clear)
        file_menu.add_command(label="退出", command=self.exit_sys)

        # 创建翻转下拉菜单
        turn_menu = tk.Menu(menubar, tearoff=0)
        menubar.add_cascade(label="翻转", menu=turn_menu)
        turn_menu.add_command(label="水平", command=self.flip_horizontal)
        turn_menu.add_command(label="垂直", command=self.flip_vertical)
        turn_menu.add_command(label="水平&垂直", command=self.flip_hor_ver)

        # 形态学
        morph_menu = tk.Menu(menubar, tearoff=0)
        menubar.add_cascade(label="形态学", menu=morph_menu)
        morph_menu.add_command(label="腐蚀", command=self.mor_corrosion)
        morph_menu.add_command(label="膨胀", command=self.mor_expand)
        morph_menu.add_command(label="开运算", command=self.mor_open_operation)
        morph_menu.add_command(label="闭运算", command=self.mor_close_operation)
        morph_menu.add_command(label="Morphological Gradient", command=self.mor_gradient)
        morph_menu.add_command(label="顶帽", command=self.mor_top_hat)
        morph_menu.add_command(label="黑帽", command=self.mor_black_hat)

        # 滤波
        filter_menu = tk.Menu(menubar, tearoff=0)
        menubar.add_cascade(label="滤波", menu=filter_menu)
        filter_menu.add_command(label="均值", command=self.filter_mean)
        filter_menu.add_command(label="方框", command=self.filter_box)
        filter_menu.add_command(label="高斯", command=self.filter_gauss)
        filter_menu.add_command(label="中值", command=self.filter_mid_value)
        filter_menu.add_command(label="双边", command=self.filter_bilateral)

        # 缩放
        scale_menu = tk.Menu(menubar, tearoff=0)
        menubar.add_cascade(label="缩放", menu=scale_menu)
        scale_menu.add_command(label="放大PyrUp", command=self.scale_pyrup)
        scale_menu.add_command(label="缩小PyrDown", command=self.scale_pyrdown)
        scale_menu.add_command(label="放大Resize", command=self.scale_zoom_in)
        scale_menu.add_command(label="缩小Resize", command=self.scale_zoom_out)

        # 旋转
        rotate_menu = tk.Menu(menubar, tearoff=0)
        menubar.add_cascade(label="旋转", menu=rotate_menu)
        rotate_menu.add_command(label="平移", command=self.rotate_offset)
        rotate_menu.add_command(label="仿射", command=self.rotate_affine)
        rotate_menu.add_command(label="透射", command=self.rotate_transmission)
        rotate_menu.add_command(label="顺时针-无缩放", command=self.rotate_clockwise)
        rotate_menu.add_command(label="顺时针-缩放", command=self.rotate_clockwise_zoom)
        rotate_menu.add_command(label="逆时针-缩放", command=self.rotate_anti_zoom)
        rotate_menu.add_command(label="零旋转-缩放", command=self.rotate_zero_zoom)

        # 帮助
        help_menu = tk.Menu(menubar, tearoff=0)
        menubar.add_cascade(label="帮助", menu=help_menu)
        help_menu.add_command(label="版权", command=self.help_copyright)
        help_menu.add_command(label="关于", command=self.help_about)

        # 创建一个容器,其父容器为self.root
        self.frame_scr = ttk.LabelFrame(self.root, text="Scour image:")
        # padx  pady   该容器外围需要留出的空余空间
        self.frame_scr.place(x=80, y=30, width=250, height=250)

        # 创建一个容器,其父容器为self.root
        self.frame_des = ttk.LabelFrame(self.root, text="Destination image:")
        # padx  pady   该容器外围需要留出的空余空间
        self.frame_des.place(x=370, y=30, width=250, height=250)

        # 创建两个label
        label_scr = ttk.Label(self.root, text='源图像', font=25, foreground='blue', anchor='center')
        label_scr.place(x=150, y=280, width=100, height=50)

        label_des = ttk.Label(self.root, text='目标图像', font=25, foreground='blue', anchor='center')
        label_des.place(x=450, y=280, width=100, height=50)

        self.label_scr_image = None
        self.label_des_image = None
        self.path = ''
        self.root.mainloop()

    def open_test_file(self):
        self.path = test_file_path
        image = Image.open(self.path)
        test_image = ImageTk.PhotoImage(image)
        if (self.label_des_image != None):
            self.label_des_image.pack_forget()  # 隐藏控件
            self.label_des_image = None
        if (self.label_scr_image == None):
            self.label_scr_image = tk.Label(self.frame_scr, image=test_image)
        self.label_scr_image.configure(image=test_image)
        self.label_scr_image.pack()
        self.root.mainloop()

    def open_file(self):
        # 打开文件对话框
        open_img_path = askopenfilename(initialdir=file_path,
                                        filetypes=[("png格式", "png"), ("jpg格式", "jpg"), ("bmp格式", "bmp")],
                                        parent=self.root,
                                        title='打开自定义图片')
        if (open_img_path == ''):
            return
        else:
            if (self.label_des_image != None):
                self.label_des_image.pack_forget()  # 隐藏控件
                self.label_des_image = None
            self.path = open_img_path
            image = Image.open(self.path)
            tk_image = ImageTk.PhotoImage(image)
            if (self.label_scr_image == None):
                self.label_scr_image = tk.Label(self.frame_scr, image=tk_image)
            self.label_scr_image.configure(image=tk_image)
            self.label_scr_image.pack()  # 显示控件
            self.root.mainloop()

    def recover(self):
        if (self.path == ''):
            return
        image = Image.open(self.path)
        tk_image = ImageTk.PhotoImage(image)
        if (self.label_des_image == None):
            return
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    def clear(self):
        if (self.label_scr_image != None):
            self.label_scr_image.pack_forget()  # 隐藏控件
            self.label_scr_image = None
            self.path = ''
        if (self.label_des_image != None):
            self.label_des_image.pack_forget()  # 隐藏控件
            self.label_des_image = None
            self.path = ''

    def exit_sys(self):
        quit_root = messagebox.askokcancel('提示', '真的要退出么!~')
        if (quit_root == True):
            self.root.destroy()
        return

    def flip_horizontal(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        # Flipped Horizontally 水平翻转
        image_hflip = cv2.flip(image, 1)
        image_pil_hflip = Image.fromarray(image_hflip)
        tk_image = ImageTk.PhotoImage(image_pil_hflip)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    def flip_vertical(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        # Flipped Horizontally 水平翻转
        image_hflip = cv2.flip(image, 0)  # 垂直翻转
        image_pil_hflip = Image.fromarray(image_hflip)
        tk_image = ImageTk.PhotoImage(image_pil_hflip)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    def flip_hor_ver(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        # Flipped Horizontally 水平翻转
        image_hflip = cv2.flip(image, -1)  # 水平垂直翻转
        image_pil_hflip = Image.fromarray(image_hflip)
        tk_image = ImageTk.PhotoImage(image_pil_hflip)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    def mor_corrosion(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        # kernel = np.ones((5, 5), np.uint8)# 指定核大小
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构
        img_erosion = cv2.erode(image, kernel)  # 腐蚀
        image_pil_erosion = Image.fromarray(img_erosion)
        tk_image = ImageTk.PhotoImage(image_pil_erosion)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()
        # 膨胀

    def mor_expand(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        # kernel = np.ones((5, 5), np.uint8)# 指定核大小
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构
        img_dilation = cv2.dilate(image, kernel)  # 膨胀
        image_pil_dilation = Image.fromarray(img_dilation)
        tk_image = ImageTk.PhotoImage(image_pil_dilation)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()
        # 开运算

    def mor_open_operation(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        # kernel = np.ones((5, 5), np.uint8)# 指定核大小
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构
        img_open_operation = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)  # 开运算
        image_pil_open = Image.fromarray(img_open_operation)
        tk_image = ImageTk.PhotoImage(image_pil_open)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()
        # 闭运算

    def mor_close_operation(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        # kernel = np.ones((5, 5), np.uint8)# 指定核大小
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构
        img_close_operation = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)  # 闭运算
        image_pil_close = Image.fromarray(img_close_operation)
        tk_image = ImageTk.PhotoImage(image_pil_close)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    # 形态学梯度:膨胀图减去腐蚀图,dilation - erosion,这样会得到物体的轮廓:
    def mor_gradient(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        # kernel = np.ones((5, 5), np.uint8)# 指定核大小
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构
        img_gradient = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel)  # 形态学梯度
        image_pil_gradient = Image.fromarray(img_gradient)
        tk_image = ImageTk.PhotoImage(image_pil_gradient)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    # 顶帽
    def mor_top_hat(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        kernel = np.ones((7, 7), np.uint8)  # 指定核大小
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构
        img_top_hat = cv2.morphologyEx(image, cv2.MORPH_TOPHAT, kernel)  # 顶帽
        image_pil_top_hat = Image.fromarray(img_top_hat)
        tk_image = ImageTk.PhotoImage(image_pil_top_hat)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    # 黑帽
    def mor_black_hat(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        kernel = np.ones((7, 7), np.uint8)  # 指定核大小
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))  # 矩形结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))  # 椭圆结构
        # kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))  # 十字形结构
        img_black_hat = cv2.morphologyEx(image, cv2.MORPH_BLACKHAT, kernel)  # 黑帽
        image_pil_black_hat = Image.fromarray(img_black_hat)
        tk_image = ImageTk.PhotoImage(image_pil_black_hat)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    '''
    常见噪声有椒盐噪声和高斯噪声,椒盐噪声可以理解为斑点,随机出现在图像中的黑点或白点;
    高斯噪声可以理解为拍摄图片时由于光照等原因造成的噪声;这样解释并不准确,只要能简单分辨即可。
    '''

    # 均值滤波
    def filter_mean(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        img_mean = cv2.blur(image, (3, 3))  # 均值滤波
        image_pil_mean = Image.fromarray(img_mean)
        tk_image = ImageTk.PhotoImage(image_pil_mean)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

        # 方框滤波方框滤波跟均值滤波很像,当可选参数normalize为True的时候,方框滤波就是均值滤波,

    # 如3×3的核,a就等于1/9;normalize为False的时候,a=1,相当于求区域内的像素和。
    def filter_box(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        img_box = cv2.boxFilter(image, -1, (3, 3), normalize=False)  # 方框滤波
        image_pil_box = Image.fromarray(img_box)
        tk_image = ImageTk.PhotoImage(image_pil_box)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    # 高斯滤波与两种滤波方式,卷积核内的每个值都一样,相当于图像区域中每个像素的权重也就一样。
    # 高斯滤波的卷积核权重并不相同,中间像素点权重最高,越远离中心的像素权重越小。
    # 高斯滤波相比均值滤波效率要慢,但可以有效消除高斯噪声,能保留更多的图像细节,所以经常被称为最有用的滤波器。
    def filter_gauss(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        img_gauss = cv2.GaussianBlur(image, (1, 1), 1)  # 方框滤波
        image_pil_gauss = Image.fromarray(img_gauss)
        tk_image = ImageTk.PhotoImage(image_pil_gauss)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    # 中值滤波,中值又叫中位数,是所有值排序后取中间的值。
    # 中值滤波就是用区域内的中值来代替本像素值,所以那种孤立的斑点,
    # 如0或255很容易消除掉,适用于去除椒盐噪声和斑点噪声。中值是一种非线性操作,效率相比前面几种线性滤波要慢。
    # 斑点噪声图,用中值滤波显然更好:
    def filter_mid_value(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        img_mid_value = cv2.medianBlur(image, 5)  # 中值滤波
        image_pil_mid_value = Image.fromarray(img_mid_value)
        tk_image = ImageTk.PhotoImage(image_pil_mid_value)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    # 双边滤波,模糊操作基本都会损失掉图像细节信息,尤其前面介绍的线性滤波器,图像的边缘信息很难保留下来。
    # 然而,边缘edge信息是图像中很重要的一个特征,所以这才有了双边滤波。
    def filter_bilateral(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        img_bilateral = cv2.bilateralFilter(image, 9, 75, 75)  # 双边滤波
        image_pil_bilateral = Image.fromarray(img_bilateral)
        tk_image = ImageTk.PhotoImage(image_pil_bilateral)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    # 图像金字塔操作的将是图像的像素问题(图像变清晰了还是模糊了)
    # 图像金字塔主要有两类:高斯金字塔和拉普拉斯金字塔。
    def scale_pyrup(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        img_pyrup = cv2.pyrUp(image)  # 高斯金字塔
        image_pil_pyrup = Image.fromarray(img_pyrup)
        tk_image = ImageTk.PhotoImage(image_pil_pyrup)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.pack()
        self.root.mainloop()

    def scale_pyrdown(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        img_pyrdown = cv2.pyrDown(image)  # 高斯金字塔
        image_pil_pyrdown = Image.fromarray(img_pyrdown)
        tk_image = ImageTk.PhotoImage(image_pil_pyrdown)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(relx=0,rely=0)# 放置组件的不同方式
        self.label_des_image.pack()
        self.root.mainloop()
        # 放大

    def scale_zoom_in(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        size = (2 * image.shape[1], 2 * image.shape[0])
        img_zoom_in = cv2.resize(image, size)  # 放大
        image_pil_zoom_in = Image.fromarray(img_zoom_in)
        tk_image = ImageTk.PhotoImage(image_pil_zoom_in)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        self.label_des_image.place(x=0, y=0)  # 放置组件的不同方式与金字塔放大相比对齐方式不同显示不同
        # self.label_des_image.pack()
        self.root.mainloop()

    # 缩小
    def scale_zoom_out(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        size = (int(0.3 * image.shape[1]), int(0.3 * image.shape[0]))
        img_zoom_out = cv2.resize(image, size)  # 放大
        image_pil_zoom_out = Image.fromarray(img_zoom_out)
        tk_image = ImageTk.PhotoImage(image_pil_zoom_out)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(x=0, y=0)
        self.label_des_image.pack()
        self.root.mainloop()

    # 平移
    def rotate_offset(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        width, height = image.shape[1], image.shape[0]
        direction = np.float32([[1, 0, 50], [0, 1, 50]])  # 沿x轴移动50,沿y轴移动50
        img_offset = cv2.warpAffine(image, direction, (width, height))
        image_pil_offset = Image.fromarray(img_offset)
        tk_image = ImageTk.PhotoImage(image_pil_offset)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(x=0, y=0)
        self.label_des_image.pack()
        self.root.mainloop()

    # 仿射-需要三个点坐标
    def rotate_affine(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        width, height = image.shape[1], image.shape[0]
        pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
        pts2 = np.float32([[10, 100], [200, 50], [100, 250]])
        rot_mat = cv2.getAffineTransform(pts1, pts2)  # 沿x轴移动50,沿y轴移动50
        img_affine = cv2.warpAffine(image, rot_mat, (width, height))
        image_pil_affine = Image.fromarray(img_affine)
        tk_image = ImageTk.PhotoImage(image_pil_affine)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(x=0, y=0)
        self.label_des_image.pack()
        self.root.mainloop()

    # 透射 -需要四个点的坐标
    def rotate_transmission(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        width, height = image.shape[1], image.shape[0]
        pts1 = np.float32([[56, 65], [238, 52], [28, 237], [239, 240]])
        pts2 = np.float32([[0, 0], [250, 0], [0, 250], [250, 250]])
        rot_mat = cv2.getPerspectiveTransform(pts1, pts2)
        img_clockwise = cv2.warpPerspective(image, rot_mat, (250, 250))  # 透射与仿射的函数不一样
        image_pil_clockwise = Image.fromarray(img_clockwise)
        tk_image = ImageTk.PhotoImage(image_pil_clockwise)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(x=0, y=0)
        self.label_des_image.pack()
        self.root.mainloop()

    # 顺时针无缩放
    def rotate_clockwise(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        width, height = image.shape[1], image.shape[0]
        rotate_center = (width // 2, height // 2)
        rot_mat = cv2.getRotationMatrix2D(rotate_center, angle=-45, scale=1)  # 旋转中心rotate_center,角度degree, 缩放scale
        img_clockwise = cv2.warpAffine(image, rot_mat, (width, height))
        image_pil_clockwise = Image.fromarray(img_clockwise)
        tk_image = ImageTk.PhotoImage(image_pil_clockwise)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(x=0, y=0)
        self.label_des_image.pack()
        self.root.mainloop()

    # 顺时针-缩放
    def rotate_clockwise_zoom(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        width, height = image.shape[1], image.shape[0]
        rotate_center = (width // 2, height // 2)
        rot_mat = cv2.getRotationMatrix2D(rotate_center, angle=-45, scale=0.6)  # 旋转中心rotate_center,角度degree, 缩放scale
        img_clockwise_zoom = cv2.warpAffine(image, rot_mat, (width, height))
        image_pil_clockwise_zoom = Image.fromarray(img_clockwise_zoom)
        tk_image = ImageTk.PhotoImage(image_pil_clockwise_zoom)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(x=0, y=0)
        self.label_des_image.pack()
        self.root.mainloop()

    # 逆时针-缩放
    def rotate_anti_zoom(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        width, height = image.shape[1], image.shape[0]
        rotate_center = (width // 2, height // 2)
        rot_mat = cv2.getRotationMatrix2D(rotate_center, angle=45, scale=0.6)  # 旋转中心rotate_center,角度degree, 缩放scale
        img_clockwise_zoom = cv2.warpAffine(image, rot_mat, (width, height))
        image_pil_clockwise_zoom = Image.fromarray(img_clockwise_zoom)
        tk_image = ImageTk.PhotoImage(image_pil_clockwise_zoom)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(x=0, y=0)
        self.label_des_image.pack()
        self.root.mainloop()

    # 零旋转-缩放
    def rotate_zero_zoom(self):
        if (self.path == ''):
            return
        if (self.label_scr_image == None):
            return
        image = cv2.imdecode(np.fromfile(self.path, dtype=np.uint8), 1)  # 读取图片
        b, g, r = cv2.split(image)  # 三通道分离
        image = cv2.merge([r, g, b])  # 三通道合并
        width, height = image.shape[1], image.shape[0]
        rotate_center = (width // 2, height // 2)
        rot_mat = cv2.getRotationMatrix2D(rotate_center, angle=0, scale=0.6)  # 旋转中心rotate_center,角度degree, 缩放scale
        img_zero_zoom = cv2.warpAffine(image, rot_mat, (width, height))
        image_pil_zero_zoom = Image.fromarray(img_zero_zoom)
        tk_image = ImageTk.PhotoImage(image_pil_zero_zoom)
        if (self.label_des_image == None):
            self.label_des_image = tk.Label(self.frame_des, image=tk_image)
        self.label_des_image.configure(image=tk_image)
        # self.label_des_image.place(x=0, y=0)
        self.label_des_image.pack()
        self.root.mainloop()

    def help_copyright(self):
        tk.messagebox.showinfo(title='版权', message='微信公众号:WdPython!~')

    def help_about(self):
        tk.messagebox.showinfo(title='关于', message='微信公众号:WdPython!~!~')


if __name__ == '__main__':
    Image_sys()

完毕!!感谢您的收看

----------★★历史博文集合★★----------

我的零基础Python教程,Python入门篇 进阶篇 视频教程 Py安装py项目 Python模块 Python爬虫 Json Xpath 正则表达式 Selenium Etree CssGui程序开发 Tkinter Pyqt5 列表元组字典数据可视化 matplotlib 词云图 Pyecharts 海龟画图 Pandas Bug处理 电脑小知识office自动化办公 编程工具 NumPy Pygame

相关推荐
xrgs_shz3 分钟前
MATLAB读入不同类型图像并显示图像和相关信息
图像处理·计算机视觉·matlab
菜鸟的人工智能之路8 分钟前
极坐标气泡图:医学数据分析的可视化新视角
python·数据分析·健康医疗
菜鸟学Python9 分钟前
Python 数据分析核心库大全!
开发语言·python·数据挖掘·数据分析
小白不太白95011 分钟前
设计模式之 责任链模式
python·设计模式·责任链模式
喜欢猪猪16 分钟前
Django:从入门到精通
后端·python·django
糖豆豆今天也要努力鸭22 分钟前
torch.__version__的torch版本和conda list的torch版本不一致
linux·pytorch·python·深度学习·conda·torch
何大春38 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
uncle_ll1 小时前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
在下不上天1 小时前
Flume日志采集系统的部署,实现flume负载均衡,flume故障恢复
大数据·开发语言·python
SEVEN-YEARS1 小时前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow