线性代数中的“过定系统”和“欠定系统”

过定系统

在线性代数中,当方程式的数量大于未知数的数量时,我们通常称这样的系统为"过定系统"(Overdetermined System)。这种情况下,系统往往没有精确解,即不存在一组未知数的值能够同时满足所有的方程。但是,可以通过一些方法找到一个"最佳近似解",这个解能够在某种意义上最小化所有方程的不满足程度。

例如,最小二乘法(Least Squares Method)就是一种常用的求解过定系统的方法。它的目标是找到一个解向量,使得所有方程的残差平方和最小。这种方法广泛应用于数据拟合、信号处理等领域。

在矩阵表示下,如果有一个线性方程组 ( A x = b ) (Ax = b) (Ax=b),其中 (A) 是一个 ( m × n ) (m \times n) (m×n) 的矩阵,(x) 和 (b) 分别是 (n) 维和 (m) 维的向量,且 (m > n),那么可以通过求解正规方程(Normal Equations) ( A T A x = A T b ) (A^TAx = A^Tb) (ATAx=ATb) 来得到最小二乘解。这里的 ( A T ) (A^T) (AT) 表示 (A) 的转置矩阵。

需要注意的是,尽管过定系统的精确解可能不存在,但通过上述方法找到的近似解仍然具有重要的实际意义和应用价值。

欠定系统

当线性方程组中的未知数数量大于方程式的数量时,我们称这样的系统为"欠定系统"(Underdetermined System)。在这种情况下,系统往往有无限多个解,因为系统的自由度比约束条件多。具体来说,假设你有一个线性方程组 (Ax = b),其中 (A) 是一个 ( m × n ) (m \times n) (m×n) 的矩阵,(x) 和 (b) 分别是 (n) 维和 (m) 维的向量,且 (m < n),那么该系统可能有无数个解。

解决欠定系统的一种常见方法是寻找一个特定类型的解,比如最小范数解(Minimum Norm Solution),即在所有可能的解中,选择一个使得 (x) 的范数(通常是欧几里得范数)最小的解。在矩阵论中,这通常可以通过使用伪逆(Moore-Penrose Pseudoinverse)来实现。对于矩阵 (A),其伪逆记作 ( A † ) (A^\dagger) (A†),则最小范数解可以表示为 ( x = A † b ) (x = A^\dagger b) (x=A†b)。

此外,在实际应用中,有时会根据问题的背景添加额外的约束条件,如非负约束或稀疏性约束,以进一步限制解的空间,从而得到更具体或更有意义的解。

总之,欠定系统提供了更大的灵活性,但也需要更多的信息或附加条件来确定一个具体的解。

相关推荐
cccc楚染rrrr14 小时前
240. 搜索二维矩阵||
java·数据结构·线性代数·算法·矩阵
hey_sml14 小时前
[NOIP2007]矩阵取数游戏
java·线性代数·算法
嘻嘻仙人2 天前
第二讲 矩阵消元——用矩阵的左乘表示矩阵消元的过程
线性代数·矩阵·消元
Dann Hiroaki4 天前
随机矩阵投影长度保持引理及其证明
线性代数·矩阵·概率论
林涧泣4 天前
图的矩阵表示
学习·线性代数·矩阵
liruiqiang054 天前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
sjsjs114 天前
【矩阵二分】力扣378. 有序矩阵中第 K 小的元素
线性代数·leetcode·矩阵
PaLu-LI5 天前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
取个名字真难呐6 天前
torch.tile 手动实现 kron+矩阵乘法
深度学习·线性代数·矩阵
十年一梦实验室7 天前
【Eigen教程】矩阵、数组和向量类(二)
线性代数·算法·矩阵