【Kafka】记录一次Kafka消费者重复消费问题

文章目录

现象

用户反馈消费者出现消息积压,并且通过日志看,一直重复消费,且没有报错日志。

业务背景

  1. 用户的消费者是一个将文件做Embedding的任务,(由于AI技术的兴起,大量文档需要做RAG);
  2. Embedding是一个比较耗时的过程,如果文件大,耗时会更长;
  3. 消费者使用的是push模式、手动提交offset的方式;
  4. 由于耗时比较长,将提交offset的超时时间改成了2小时;
  5. 服务运行一段时间,QPS不高(个位数),压力不大。

排查过程

  1. 从监控中看,消费者有了100多条积压,并且持续了很长时间;
  2. 从业务上,有一个用户同一时间上传了大量大文件;
  3. 只有一个消费者,服务端瞬间产生大量消息,同一时间推送给了消费者;
  4. 消费者处理Embedding任务超过两小时,导致这一批消息提交offset超时;
  5. 服务端认为客户端处理消息失败,一直进行重新推送,所以造成了没报错,但是一直重复消费的情况。

Push与Pull

MQ的消费模式可以大致分为两种,一种是推Push,一种是拉Pull。

  • Push是服务端主动推送消息给客户端,优点是及时性较好,但如果客户端没有做好流控,一旦服务端推送大量消息到客户端时,就会导致客户端消息堆积甚至崩溃。
  • Pull是客户端需要主动到服务端取数据,优点是客户端可以依据自己的消费能力进行消费,但拉取的频率也需要用户自己控制,拉取频繁容易造成服务端和客户端的压力,拉取间隔长又容易造成消费不及时。
相关推荐
码农水水25 分钟前
京东Java面试被问:HTTP/2的多路复用和头部压缩实现
java·开发语言·分布式·http·面试·php·wpf
Francek Chen2 小时前
【大数据基础】大数据处理架构Hadoop:01 Hadoop概述
大数据·hadoop·分布式·架构
陌路207 小时前
RPC分布式通信(5)--发布 RPC 服务、处理客户端调用请求
分布式·qt·rpc
LDG_AGI8 小时前
【机器学习】深度学习推荐系统(三十):X 推荐算法Phoenix rerank机制
人工智能·分布式·深度学习·算法·机器学习·推荐算法
秋雨雁南飞8 小时前
C# 分布式消息框架
分布式
ZePingPingZe9 小时前
TCC—最终一致性分布式事务方案及【案例】
分布式·微服务
alonewolf_999 小时前
RabbitMQ高级功能全面解析:队列选型、死信队列与消息分片实战指南
分布式·消息队列·rabbitmq·ruby
hellojackjiang201110 小时前
如何保障分布式IM聊天系统的消息有序性(即消息不乱)
分布式·架构·即时通讯·im开发
burning_maple11 小时前
设计数据密集型应用阅读笔记
分布式·后端·中间件
alonewolf_9911 小时前
RabbitMQ快速上手与核心概念详解
分布式·消息队列·rabbitmq