【Kafka】记录一次Kafka消费者重复消费问题

文章目录

现象

用户反馈消费者出现消息积压,并且通过日志看,一直重复消费,且没有报错日志。

业务背景

  1. 用户的消费者是一个将文件做Embedding的任务,(由于AI技术的兴起,大量文档需要做RAG);
  2. Embedding是一个比较耗时的过程,如果文件大,耗时会更长;
  3. 消费者使用的是push模式、手动提交offset的方式;
  4. 由于耗时比较长,将提交offset的超时时间改成了2小时;
  5. 服务运行一段时间,QPS不高(个位数),压力不大。

排查过程

  1. 从监控中看,消费者有了100多条积压,并且持续了很长时间;
  2. 从业务上,有一个用户同一时间上传了大量大文件;
  3. 只有一个消费者,服务端瞬间产生大量消息,同一时间推送给了消费者;
  4. 消费者处理Embedding任务超过两小时,导致这一批消息提交offset超时;
  5. 服务端认为客户端处理消息失败,一直进行重新推送,所以造成了没报错,但是一直重复消费的情况。

Push与Pull

MQ的消费模式可以大致分为两种,一种是推Push,一种是拉Pull。

  • Push是服务端主动推送消息给客户端,优点是及时性较好,但如果客户端没有做好流控,一旦服务端推送大量消息到客户端时,就会导致客户端消息堆积甚至崩溃。
  • Pull是客户端需要主动到服务端取数据,优点是客户端可以依据自己的消费能力进行消费,但拉取的频率也需要用户自己控制,拉取频繁容易造成服务端和客户端的压力,拉取间隔长又容易造成消费不及时。
相关推荐
深圳蔓延科技17 小时前
Kafka的高性能之路
后端·kafka
努力的小郑1 天前
从一次分表实践谈起:我们真的需要复杂的分布式ID吗?
分布式·后端·面试
AAA修煤气灶刘哥2 天前
别让Redis「歪脖子」!一次搞定数据倾斜与请求倾斜的捉妖记
redis·分布式·后端
阿里云云原生2 天前
嘉银科技基于阿里云 Kafka Serverless 提升业务弹性能力,节省成本超过 20%
kafka·serverless
Aomnitrix2 天前
知识管理新范式——cpolar+Wiki.js打造企业级分布式知识库
开发语言·javascript·分布式
程序消消乐2 天前
Kafka 入门指南:从 0 到 1 构建你的 Kafka 知识基础入门体系
分布式·kafka
智能化咨询2 天前
Kafka架构:构建高吞吐量分布式消息系统的艺术——进阶优化与行业实践
分布式·架构·kafka
Chasing__Dreams2 天前
kafka--基础知识点--5.2--最多一次、至少一次、精确一次
分布式·kafka
在未来等你2 天前
Elasticsearch面试精讲 Day 17:查询性能调优实践
大数据·分布式·elasticsearch·搜索引擎·面试