大数据处理系统架构特征

Storm之父Nathan Marz在《大数据系统构建:可扩展实时数据系统构建原理与最佳实践》一书中,提出了他认为大数据系统应该具有的属性

1.鲁棒性和容错性(Robust and Fault-tolerant)

对大规模分布式系统来说,机器是不可靠的,可能会宕机,但是系统需要是健壮、行为正确的,即使是遇到机器错误。除了机器错误,人更可能会犯错误。在软件开发中难免会有一些Bug,系统必须对有Bug的程序写入的错误数据有足够的适应能力,所以比机器容错性更加重要的容错性是人为操作容错性。对于大规模的分布式系统来说,人和机器的错误每天都可能会发生,如何应对人和机器的错误,让系统能够从错误中快速恢复尤其重要。

2.低延迟读取和更新能力(Low Latency Reads and Updates)

许多应用程序要求数据系统拥有几毫秒到几百毫秒的低延迟读取和更新能力。有的应用程序允许几个小时的延迟更新,但是只要有低延迟读取与更新的需求,系统就应该在保证鲁棒性的前提下实现。

3.横向扩容(Scalable)

当数据量或负荷增大时,可扩展性的系统通过增加更多的机器资源来维持性能。也就是常说的系统需要线性可扩展,通常采用scale out(通过增加机器的个数)而不是scale up(通过增强机器的性能)。

4.通用性(General)

系统需要支持绝大多数应用程序,包括金融领域、社交网络、电子商务数据分析等。

5.延展性(Extensible)

在新的功能需求出现时,系统需要能够将新功能添加到系统中。同时,系统的大规模迁移能力是设计者需要考虑的因素之一,这也是可延展性的体现。

6.即席查询能力(Allows Ad Hoc Queres)

用户在使用系统时,应当可以按照自己的要求进行即席查询(Ad Hoc)。这使用户可以通过系统多样化数据处理,产生更高的应用价值。

7.最少维护能力(Minimal Maintenance)

系统需要在大多数时间下保持平稳运行。使用机制简单的组件和算法让系统底层拥有低复杂度,是减少系统维护次数的重要途径。Marz认为大数据系统设计不能再基于传统架构的增量更新设计,要通过减少复杂性以减少发生错误的几率、避免繁重操作。

8.可调试性(Debuggable)

系统在运行中产生的每一个值,需要有可用途径进行追踪,并且要能够明确这些值是如何产生的。

相关推荐
萤丰信息2 小时前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
jun_bai6 小时前
python写的文件备份网盘程序
运维·服务器·网络
爱吃牛肉的大老虎6 小时前
网络传输架构之gRPC讲解
网络·架构
Warren986 小时前
Python自动化测试全栈面试
服务器·网络·数据库·mysql·ubuntu·面试·职场和发展
云飞云共享云桌面7 小时前
无需配置传统电脑——智能装备工厂10个SolidWorks共享一台工作站
运维·服务器·前端·网络·算法·电脑
骆驼10248 小时前
手机热点和无线路由器在 IPv6 工作模式上的区别
网络·ipv6
中科岩创8 小时前
河北某铁矿绿色矿山建设二期自动化监测项目
大数据
jenchoi4139 小时前
【2025-11-23】软件供应链安全日报:最新漏洞预警与投毒预警情报汇总
网络·数据库·安全·web安全·网络安全
jiayong2310 小时前
多子系统架构下的Nginx部署策略与最佳实践
运维·nginx·系统架构
独行soc10 小时前
2025年渗透测试面试题总结-258(题目+回答)
网络·python·安全·web安全·渗透测试·安全狮