二刷算法训练营Day53 | 动态规划(14/17)

目录

详细布置:

[1. 392. 判断子序列](#1. 392. 判断子序列)

[2. 115. 不同的子序列](#2. 115. 不同的子序列)


详细布置:

1. 392. 判断子序列

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

致谢:

特别感谢@pbrother添加此问题并且创建所有测试用例。

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础


2. 115. 不同的子序列

给你两个字符串 st ,统计并返回在 s子序列t 出现的个数,结果需要对 109 + 7 取模。

这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。

但相对于刚讲过的动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了了

python 复制代码
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]
相关推荐
gihigo19983 小时前
希尔伯特-黄变换(HHT)完整MATLAB实现
人工智能·算法·matlab
C++ 老炮儿的技术栈3 小时前
C/C++ 中 inline(内联函数)和宏定义(#define)的区别
开发语言·c++·git·算法·机器人·visual studio
大柏怎么被偷了3 小时前
【C++】哈希的应用
算法·哈希算法
血小板要健康3 小时前
如何计算时间复杂度(上)
java·数据结构·算法
古城小栈3 小时前
Rust Vec与HashMap全功能解析:定义、使用与进阶技巧
算法·rust
wWYy.4 小时前
详解哈希表
数据结构·算法·散列表
无望__wsk4 小时前
Python第一次作业
开发语言·python·算法
Lips6114 小时前
2026.1.25力扣刷题笔记
笔记·算法·leetcode
源代码•宸4 小时前
Leetcode—746. 使用最小花费爬楼梯【简单】
后端·算法·leetcode·职场和发展·golang·记忆化搜索·动规
南 阳4 小时前
Python从入门到精通day16
开发语言·python·算法