二刷算法训练营Day53 | 动态规划(14/17)

目录

详细布置:

[1. 392. 判断子序列](#1. 392. 判断子序列)

[2. 115. 不同的子序列](#2. 115. 不同的子序列)


详细布置:

1. 392. 判断子序列

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

致谢:

特别感谢@pbrother添加此问题并且创建所有测试用例。

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础


2. 115. 不同的子序列

给你两个字符串 st ,统计并返回在 s子序列t 出现的个数,结果需要对 109 + 7 取模。

这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。

但相对于刚讲过的动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了了

python 复制代码
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]
相关推荐
埃伊蟹黄面15 分钟前
模拟算法思想
c++·算法·leetcode
副露のmagic21 分钟前
更弱智的算法学习day 10
python·学习·算法
逸风尊者30 分钟前
开发可掌握的知识:uber H3网格
后端·算法
半问42 分钟前
付费投流硬控互联网
人工智能·算法·互联网·推荐·流量
西岸行者1 小时前
学习Hammerstein-Wiener 模型,以及在回声消除场景中的应用
人工智能·学习·算法
夏乌_Wx1 小时前
练题100天——DAY24:罗马数字转整数+环形链表+大小端判断
算法
youngee111 小时前
hot100-48腐烂的橘子
算法
liu****1 小时前
10.排序
c语言·开发语言·数据结构·c++·算法·排序算法
_OP_CHEN2 小时前
【算法基础篇】(三十二)动态规划之背包问题扩展:从多重到多维,解锁背包问题全场景
c++·算法·蓝桥杯·动态规划·背包问题·算法竞赛·acm/icpc
listhi5202 小时前
机械系统运动学与动力学在MATLAB及SimMechanics中的实现方案
人工智能·算法·matlab