二刷算法训练营Day53 | 动态规划(14/17)

目录

详细布置:

[1. 392. 判断子序列](#1. 392. 判断子序列)

[2. 115. 不同的子序列](#2. 115. 不同的子序列)


详细布置:

1. 392. 判断子序列

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

致谢:

特别感谢@pbrother添加此问题并且创建所有测试用例。

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础


2. 115. 不同的子序列

给你两个字符串 st ,统计并返回在 s子序列t 出现的个数,结果需要对 109 + 7 取模。

这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。

但相对于刚讲过的动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了了

python 复制代码
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]
相关推荐
wearegogog1232 分钟前
时间分数阶微分方程数值求解
算法
CoderYanger36 分钟前
A.每日一题——2536. 子矩阵元素加 1
java·线性代数·算法·leetcode·矩阵
普通网友1 小时前
C++与Qt图形开发
开发语言·c++·算法
KG_LLM图谱增强大模型1 小时前
Vgent:基于图的多模态检索推理增强生成框架GraphRAG,突破长视频理解瓶颈
大数据·人工智能·算法·大模型·知识图谱·多模态
普通网友1 小时前
C++中的适配器模式
开发语言·c++·算法
普通网友2 小时前
C++中的委托构造函数
开发语言·c++·算法
普通网友2 小时前
C++中的代理模式实战
开发语言·c++·算法
普通网友2 小时前
C++模块化设计原则
开发语言·c++·算法
倦王3 小时前
力扣日刷251117
算法·leetcode·职场和发展
Genevieve_xiao3 小时前
【数据结构】【xjtuse】八股文单元小测
数据结构·算法