二刷算法训练营Day53 | 动态规划(14/17)

目录

详细布置:

[1. 392. 判断子序列](#1. 392. 判断子序列)

[2. 115. 不同的子序列](#2. 115. 不同的子序列)


详细布置:

1. 392. 判断子序列

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

致谢:

特别感谢@pbrother添加此问题并且创建所有测试用例。

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础


2. 115. 不同的子序列

给你两个字符串 st ,统计并返回在 s子序列t 出现的个数,结果需要对 109 + 7 取模。

这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。

但相对于刚讲过的动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了了

python 复制代码
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]
相关推荐
绝无仅有32 分钟前
企微审批对接错误与解决方案
后端·算法·架构
用户5040827858391 小时前
1. RAG 权威指南:从本地实现到生产级优化的全面实践
算法
Python×CATIA工业智造3 小时前
详细页智能解析算法:洞悉海量页面数据的核心技术
爬虫·算法·pycharm
无聊的小坏坏3 小时前
力扣 239 题:滑动窗口最大值的两种高效解法
c++·算法·leetcode
黎明smaly3 小时前
【排序】插入排序
c语言·开发语言·数据结构·c++·算法·排序算法
YuTaoShao4 小时前
【LeetCode 热题 100】206. 反转链表——(解法一)值翻转
算法·leetcode·链表
YuTaoShao4 小时前
【LeetCode 热题 100】142. 环形链表 II——快慢指针
java·算法·leetcode·链表
CCF_NOI.4 小时前
(普及−)B3629 吃冰棍——二分/模拟
数据结构·c++·算法
运器1235 小时前
【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
大数据·人工智能·算法·机器学习·支持向量机·ai·ai编程