二刷算法训练营Day53 | 动态规划(14/17)

目录

详细布置:

[1. 392. 判断子序列](#1. 392. 判断子序列)

[2. 115. 不同的子序列](#2. 115. 不同的子序列)


详细布置:

1. 392. 判断子序列

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

致谢:

特别感谢@pbrother添加此问题并且创建所有测试用例。

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础


2. 115. 不同的子序列

给你两个字符串 st ,统计并返回在 s子序列t 出现的个数,结果需要对 109 + 7 取模。

这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。

但相对于刚讲过的动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了了

python 复制代码
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        dp = [[0] * (len(t)+1) for _ in range(len(s)+1)]
        for i in range(len(s)):
            dp[i][0] = 1
        for j in range(1, len(t)):
            dp[0][j] = 0
        for i in range(1, len(s)+1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[-1][-1]
相关推荐
haaaaaaarry13 分钟前
【分治法】线性时间选择问题
数据结构·算法
CS创新实验室22 分钟前
计算机考研之数据结构:P 问题和 NP 问题
数据结构·考研·算法
OTWOL1 小时前
【C++编程入门基础(一)】
c++·算法
谏君之1 小时前
C语言实现的常见算法示例
c语言·算法·排序算法
机器视觉知识推荐、就业指导2 小时前
【数字图像处理二】图像增强与空域处理
图像处理·人工智能·经验分享·算法·计算机视觉
IT猿手3 小时前
超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
人工智能·算法·机器学习·matlab·无人机
Erik_LinX3 小时前
算法日记25:01背包(DFS->记忆化搜索->倒叙DP->顺序DP->空间优化)
算法·深度优先
Alidme3 小时前
cs106x-lecture14(Autumn 2017)-SPL实现
c++·学习·算法·codestepbystep·cs106x
小王努力学编程3 小时前
【算法与数据结构】单调队列
数据结构·c++·学习·算法·leetcode
最遥远的瞬间3 小时前
15-贪心算法
算法·贪心算法