Python爬取股票信息-并进行数据可视化分析,绘股票成交量柱状图

为了使用Python爬取股票信息并进行数据可视化分析,我们可以使用几个流行的库:requests 用于网络请求,pandas 用于数据处理,以及 matplotlibseaborn 用于数据可视化。

步骤 1: 安装必要的库

首先,确保安装了以下Python库:

python 复制代码
pip install requests pandas matplotlib

步骤 2: 爬取股票数据(完整代码请看文末)

python 复制代码
import requests     # 发送网络请求
import csv
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Bar


# 伪装
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.71 Safari/537.36 Core/1.94.249.400 QQBrowser/12.5.5658.400'
}
file = open('data2.csv', mode='a', encoding='utf-8', newline='')
csv_write = csv.DictWriter(file, fieldnames=['股票代码','股票名称','当前价','涨跌额','涨跌幅','年初至今','成交量','成交额','换手率','市盈率(TTM)','股息率','市值'])
csv_write.writeheader()

# 发送请求并获取数据

for page in range(1, 56):
    url = f'https://xueqiu.com/service/v5/stock/screener/quote/list?page={page}&size=30&order=desc&order_by=amount&exchange=CN&market=CN&type=sha&_=1637908787379'
    response = requests.get(url, headers=headers)
    json_data = response.json()

    
.............................................

步骤 3: 数据可视化

python 复制代码
# 存入CSV文件

data_df = pd.read_csv('data2.csv')
df = data_df.dropna()
df1 = df[['股票名称', '成交量']]
df2 = df1.iloc[:20]
print(df2['股票名称'].values)
print(df2['成交量'].values)

#把数据进行可视化处理,并且存为data.html

运行结果:

完整代码请看下方拿👇↓↓↓

版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

相关推荐
Coder_Boy_6 分钟前
Java开发者破局指南:跳出内卷,借AI赋能,搭建系统化知识体系
java·开发语言·人工智能·spring boot·后端·spring
databook11 分钟前
像搭积木一样思考:数据科学中的“自下而上”之道
python·数据挖掘·数据分析
Mr_Xuhhh12 分钟前
介绍一下ref
开发语言·c++·算法
luoluoal12 分钟前
基于python的医疗问句中的实体识别算法的研究(源码+文档)
python·mysql·django·毕业设计·源码
nbsaas-boot16 分钟前
软件开发最核心的理念:接口化与组件化
开发语言
lsx20240620 分钟前
Java 对象概述
开发语言
啊阿狸不会拉杆22 分钟前
《机器学习导论》第 9 章-决策树
人工智能·python·算法·决策树·机器学习·数据挖掘·剪枝
Mr_Xuhhh23 分钟前
C++11实现线程池
开发语言·c++·算法
喵手25 分钟前
Python爬虫实战:城市停车收费标准自动化采集系统 - 让停车费透明化的技术实践(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·城市停车收费标准·采集城市停车收费数据·采集停车数据csv文件导出
无水先生26 分钟前
python函数的参数管理(01)*args和**kwargs
开发语言·python