RKNN3588——利用推理YOLOv8推理图片

1. yolov8_test.py

python 复制代码
import os
import cv2
import numpy as np
from class_type import CLASSES


# 设置对象置信度阈值和非极大值抑制(NMS)阈值。
OBJ_THRESH = 0.25
NMS_THRESH = 0.45 

IMG_SIZE = (640, 640)

def filter_boxes(boxes, box_confidences, box_class_probs):
    # 筛选出满足条件的框,根据置信度和类别概率筛选出有效的框。
    box_confidences = box_confidences.reshape(-1)
    # candidate, class_num = box_class_probs.shape

    class_max_score = np.max(box_class_probs, axis=-1)
    classes = np.argmax(box_class_probs, axis=-1)

    _class_pos = np.where(class_max_score * box_confidences >= OBJ_THRESH)
    scores = (class_max_score * box_confidences)[_class_pos]

    boxes = boxes[_class_pos]
    classes = classes[_class_pos]

    return boxes, classes, scores

def nms_boxes(boxes, scores):
    # 使用非极大值抑制(NMS)来消除冗余框,保留最优的检测框。
    x = boxes[:, 0]
    y = boxes[:, 1]
    w = boxes[:, 2] - boxes[:, 0]
    h = boxes[:, 3] - boxes[:, 1]

    areas = w * h
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)

        xx1 = np.maximum(x[i], x[order[1:]])
        yy1 = np.maximum(y[i], y[order[1:]])
        xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
        yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])

        w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
        h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
        inter = w1 * h1

        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= NMS_THRESH)[0]
        order = order[inds + 1]
    keep = np.array(keep)
    return keep

# def dfl(position):
#     # 改进模型对目标边界框的回归预测,是一种增强的损失函数
#     import torch
#     x = torch.tensor(position)
#     n, c, h, w = x.shape
#     p_num = 4
#     mc = c // p_num
#     y = x.reshape(n, p_num, mc, h, w)
#     y = y.softmax(2)
#     acc_metrix = torch.tensor(range(mc)).float().reshape(1, 1, mc, 1, 1)
#     y = (y * acc_metrix).sum(2)
#     return y.numpy()
#############################################################


### 不需要torch
def dfl(position):
    # 用来改进模型对目标边界框的回归预测
    # print('111111111111111', position.shape)
    n, c, h, w = position.shape
    p_num = 4
    mc = c // p_num
    y = position.reshape(n, p_num, mc, h, w)
    y = softmax(y, 2)
    acc_metrix = np.arange(mc).reshape(1, 1, mc, 1, 1)
    y = (y * acc_metrix).sum(2)
    return y

def softmax(data, dim):
    max = np.max(data, axis=dim, keepdims=True).repeat(data.shape[dim], axis=dim)
    exps = np.exp(data - max)
    return exps / np.sum(exps, axis=dim, keepdims=True)
#############################################################

def box_process(position):
    # 处理边界框的坐标,将其转换为实际图像上的坐标。
    grid_h, grid_w = position.shape[2:4]
    col, row = np.meshgrid(np.arange(0, grid_w), np.arange(0, grid_h))
    col = col.reshape(1, 1, grid_h, grid_w)
    row = row.reshape(1, 1, grid_h, grid_w)
    grid = np.concatenate((col, row), axis=1)
    stride = np.array([IMG_SIZE[1] // grid_h, IMG_SIZE[0] // grid_w]).reshape(1, 2, 1, 1)

    position = dfl(position)
    box_xy = grid + 0.5 - position[:, 0:2, :, :]
    box_xy2 = grid + 0.5 + position[:, 2:4, :, :]
    xyxy = np.concatenate((box_xy * stride, box_xy2 * stride), axis=1)

    return xyxy

def yolov8_post_process(input_data):
    # 模型输出的原始预测结果经过后处理,以生成最终的检测结果

    print(len(input_data))
    boxes, scores, classes_conf = [], [], []
    default_branch = 3  # 输入数据分成三部分进行处理
    pair_per_branch = len(input_data) // default_branch
    
    print("aaaaaaaaaaa",pair_per_branch)

    # 处理每个分支数据
    for i in range(default_branch):
        boxes.append(box_process(input_data[pair_per_branch * i]))
        classes_conf.append(input_data[pair_per_branch * i + 1])
        scores.append(np.ones_like(input_data[pair_per_branch * i + 1][:, :1, :, :], dtype=np.float32))

    # 将输入张量 _in 重新排列并展平
    def sp_flatten(_in):
        ch = _in.shape[1]   # 获取输入的通道数
        _in = _in.transpose(0, 2, 3, 1) # 将通道维度移到最后
        return _in.reshape(-1, ch) # 将张量展平为二维

    # 使用 sp_flatten 函数展平每个分支的 boxes、classes_conf 和 scores
    boxes = [sp_flatten(_v) for _v in boxes]
    classes_conf = [sp_flatten(_v) for _v in classes_conf]
    scores = [sp_flatten(_v) for _v in scores]

    # 将每个分支的展平数据连接成一个整体
    boxes = np.concatenate(boxes)
    scores = np.concatenate(scores)
    classes_conf = np.concatenate(classes_conf)

    # 过滤框
    boxes, classes, scores = filter_boxes(boxes, scores, classes_conf)

    # nms--非极大值抑制
    nboxes, nclasses, nscores = [], [], []
    for c in set(classes):
        inds = np.where(classes == c)
        b = boxes[inds]
        c = classes[inds]
        s = scores[inds]
        keep = nms_boxes(b, s)

        if len(keep) != 0:
            nboxes.append(b[keep])
            nclasses.append(c[keep])
            nscores.append(s[keep])

    if not nclasses and not nscores:
        return None, None, None

    boxes = np.concatenate(nboxes)
    classes = np.concatenate(nclasses)
    scores = np.concatenate(nscores)

    return boxes, classes, scores

def draw(image, boxes, scores, classes):
    # 画框
    print("{:^12} {:^12}  {}".format('class', 'score', 'xmin, ymin, xmax, ymax'))
    print('-' * 50)
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = [int(_b) for _b in box]
        # print("%s @ (%d %d %d %d) %.3f" % (CLASSES[cl], top, left, right, bottom, score))
        cv2.rectangle(image, (top, left), (right, bottom), (0, 255, 0), 2)
        cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
                    (top, left - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,255, 0), 2)
        
        print("{:^12} {:^12.3f} [{:>4}, {:>4}, {:>4}, {:>4}]".format(CLASSES[cl], score, top, left, right, bottom))
    return image

2. test.py

python 复制代码
import time
import cv2
import numpy as np
from coco_utils import COCO_test_helper
from rknnlite.api import RKNNLite
from yolov8_test import yolov8_post_process,draw
from collections import deque


class Model:
    def __init__(self, model_path) -> None:
        self.rknn_model = model_path
        self.rknn_lite = RKNNLite()
        print(f'--> Load {self.rknn_model} model')
        ret = self.rknn_lite.load_rknn(self.rknn_model)
        if ret != 0:
            print('Load RKNNLite model failed')
            exit(ret)
        print('done')
        # 初始化运行环境
        print('--> Init runtime environment')
        ret = self.rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)
        if ret != 0:
            print('Init runtime environment failed')
            exit(ret)
        print('done')

    def inference(self, img_src, IMG_SIZE):
        if img_src is None:
            print('Error: image read failed')
            return None
        self.co_helper = COCO_test_helper(enable_letter_box=True)
        img = self.co_helper.letter_box(im=img_src.copy(), new_shape=(IMG_SIZE[1], IMG_SIZE[0]), pad_color=(0, 0, 0))
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = np.expand_dims(img, 0)
        # print(f'--> Running RKNN model')
        outputs = self.rknn_lite.inference(inputs=[img])
        return outputs

    def release(self):
        self.rknn_lite.release()

    def recover_real_box(self, boxes):
        # 还原框
        boxes = self.co_helper.get_real_box(boxes)
        return boxes
    

if __name__ == '__main__':
    yolo_model_path = 'yolov8-main/study/yolov8-240617.rknn'
    yolo_model = Model(yolo_model_path)
    img_path = r"yolov8-main/study/76_269.jpg"
    img = cv2.imread(img_path)
    yolo_result = yolo_model.inference(img, IMG_SIZE=(640,640))
    boxes, classes, scores = yolov8_post_process(yolo_result)
    boxes = yolo_model.recover_real_box(boxes=boxes)



    after_images = draw(img, boxes, scores, classes)
    cv2.imwrite("1.jpg",after_images)
    # print(yolo_result)

3. study/class_type.py

python 复制代码
CLASSES = ("building", "building2", "statue")
coco_id_list = [1, 2, 3]
相关推荐
努力的家伙是不讨厌的12 分钟前
解析json导出csv或者直接入库
开发语言·python·json
云空35 分钟前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite
凤枭香1 小时前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
测试杂货铺1 小时前
外包干了2年,快要废了。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
小码的头发丝、2 小时前
Django中ListView 和 DetailView类的区别
数据库·python·django
Chef_Chen3 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
千澜空3 小时前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务
斯凯利.瑞恩3 小时前
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
python·决策树·随机森林
yannan201903133 小时前
【算法】(Python)动态规划
python·算法·动态规划