⭐CVPR2025 MatAnyone:稳定且精细的视频抠图新框架

📄论文题目:MatAnyone: Stable Video Matting with Consistent Memory Propagation

✍️作者及机构:Peiqing Yang、Shangchen Zhou、Jixin Zhao、Qingyi Tao、Chen Change Loy(1S-Lab, Nanyang Technological University;2SenseTime Research, Singapore)

🧩面临问题:当前辅助 - free 视频抠图方法存在诸多局限。一方面,在复杂或模糊背景下易混淆目标,尤其当背景中出现相似物体(如其他人物)时性能下降;另一方面,现有视频抠图数据集(如 VideoMatte240K)质量差(核心区有漏洞、边界细节模糊)、规模小且偏合成,导致模型泛化能力弱;此外,难以同时兼顾核心区域语义稳定性与边界细节精细度,现有方法常出现核心语义崩坏或边界粗糙问题。

🎯创新点及其具体研究方法:

1️⃣ 提出 MatAnyone 目标指定视频抠图框架:基于记忆范式,仅需第一帧的目标分割掩码即可实现全程稳定抠图。借鉴视频目标分割的记忆机制,将过去帧及对应结果编码为记忆,新帧通过检索记忆实现目标稳定跟踪,兼顾交互性与长视频鲁棒性。

2️⃣ 一致记忆传播机制:通过区域自适应记忆融合实现稳定传播。先估算当前帧与前一帧的 alpha 值变化,标记 "大变化"(边界区)和 "小变化"(核心区)区域;"小变化" 核心区优先保留前帧记忆以保证语义稳定,"大变化" 边界区侧重当前帧信息以捕捉精细细节,提升 temporal consistency 与细节质量。

3️⃣ 构建高质量数据集:推出 VM800 训练集和 YoutubeMatte 测试集。VM800 规模为 VideoMatte240K 的 2 倍,质量更高(核心区无漏洞、边界细节清晰)且多样性更强;YoutubeMatte 包含更多样的真实前景视频,提升测试基准的挑战性与可靠性。

4️⃣ 基于分割数据的核心区监督策略:针对真实视频抠图数据稀缺问题,利用大规模分割数据增强训练。核心区采用像素级损失确保语义稳定性;边界区改进 DDC 损失为缩放版本,无需真实 alpha 标签即可优化边界细节,避免原版 DDC 导致的锯齿边缘问题。

#论文精读 #视频抠图 #计算机视觉 #CVPR #深度学习 #图像分割 #视频处理、


相关推荐
飞哥数智坊28 分钟前
别再组团队了,AI时代一个人就能创业
人工智能·创业
严文文-Chris1 小时前
GPT5的Test-time compute(测试时计算)是什么?
人工智能
Java中文社群1 小时前
白嫖ClaudeCode秘籍大公开!超详细
人工智能·后端
MicrosoftReactor1 小时前
技术速递|使用 AI 应用模板扩展创建一个 .NET AI 应用与自定义数据进行对话
人工智能·.net
今***b2 小时前
Python 操作 PPT 文件:从新手到高手的实战指南
java·python·powerpoint
迪菲赫尔曼2 小时前
大模型入门实战 | 基于 YOLO 数据集微调 Qwen2.5-VL-3B-Instruct 的目标检测任务
人工智能·yolo·目标检测·大模型·微调·新手入门·qwen2.5
MARS_AI_2 小时前
云蝠智能 Voice Agent:多语言交互时代的AI智能语音呼叫
人工智能·自然语言处理·交互·语音识别
程序员杰哥3 小时前
Jmeter+Jenkins接口压力测试持续集成
自动化测试·软件测试·python·测试工具·jmeter·jenkins·压力测试
THMAIL3 小时前
深度剖析Spring AI源码(七):化繁为简,Spring Boot自动配置的实现之秘
人工智能·spring boot·spring