Python使用总结之DataFrame使用详解

Python使用总结之DataFrame使用详解

Pandas是Python中最强大的数据分析库之一,而DataFrame是Pandas中最重要的数据结构。DataFrame可以看作是一种表格型数据结构,它类似于电子表格或SQL表,可以轻松地进行数据操作和分析。

本文将详细介绍Pandas中的DataFrame的使用方法,包括创建、操作、索引、处理缺失值和数据聚合等方面。

一、创建DataFrame

DataFrame可以通过多种方式创建,常见的包括从字典、列表、NumPy数组和CSV文件等创建。

  1. 从字典创建DataFrame
python 复制代码
import pandas as pd

data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'Los Angeles', 'Chicago']
}

df = pd.DataFrame(data)
print(df)
  1. 从列表创建DataFrame
python 复制代码
data = [
    ['Alice', 25, 'New York'],
    ['Bob', 30, 'Los Angeles'],
    ['Charlie', 35, 'Chicago']
]

df = pd.DataFrame(data, columns=['Name', 'Age', 'City'])
print(df)
  1. 从NumPy数组创建DataFrame
python 复制代码
import numpy as np

data = np.array([
    ['Alice', 25, 'New York'],
    ['Bob', 30, 'Los Angeles'],
    ['Charlie', 35, 'Chicago']
])

df = pd.DataFrame(data, columns=['Name', 'Age', 'City'])
print(df)
  1. 从CSV文件创建DataFrame
python 复制代码
df = pd.read_csv('data.csv')
print(df)
二、基本操作
  1. 查看数据
python 复制代码
print(df.head())   # 查看前5行数据
print(df.tail())   # 查看后5行数据
print(df.info())   # 查看DataFrame的信息
print(df.describe()) # 查看数据的统计信息
  1. 选取数据
python 复制代码
print(df['Name'])   # 选取单列
print(df[['Name', 'Age']])   # 选取多列
  1. 行列索引
python 复制代码
print(df.iloc[0])   # 按位置选取行
print(df.loc[0])    # 按标签选取行
print(df.iloc[:, 0])   # 按位置选取列
print(df.loc[:, 'Name'])   # 按标签选取列
  1. 筛选数据
python 复制代码
print(df[df['Age'] > 30])   # 筛选年龄大于30的数据
三、处理缺失值

缺失值是数据分析中常见的问题,Pandas提供了多种方法来处理缺失值。

  1. 查看缺失值
python 复制代码
print(df.isnull())   # 查看缺失值情况
print(df.isnull().sum())   # 统计每列缺失值的数量
  1. 填充缺失值
python 复制代码
df['Age'].fillna(df['Age'].mean(), inplace=True)   # 用均值填充缺失值
df['City'].fillna('Unknown', inplace=True)   # 用特定值填充缺失值
  1. 删除缺失值
python 复制代码
df.dropna(inplace=True)   # 删除包含缺失值的行
四、数据聚合

Pandas提供了强大的数据聚合功能,可以轻松地对数据进行分组、汇总和统计分析。

  1. 分组与聚合
python 复制代码
grouped = df.groupby('City')
print(grouped['Age'].mean())   # 按城市分组,计算年龄的均值
  1. 多重聚合
python 复制代码
agg_funcs = {'Age': ['mean', 'max'], 'Name': 'count'}
print(df.groupby('City').agg(agg_funcs))   # 多重聚合
  1. 透视表
python 复制代码
pivot_table = df.pivot_table(values='Age', index='City', aggfunc='mean')
print(pivot_table)   # 创建透视表
五、DataFrame的合并

Pandas支持多种方式的DataFrame合并,包括连接、合并和拼接。

  1. 连接
python 复制代码
df1 = pd.DataFrame({
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35]
})

df2 = pd.DataFrame({
    'Name': ['Alice', 'Bob', 'Charlie'],
    'City': ['New York', 'Los Angeles', 'Chicago']
})

merged_df = pd.merge(df1, df2, on='Name')
print(merged_df)   # 按照Name列进行连接
  1. 拼接
python 复制代码
df1 = pd.DataFrame({
    'Name': ['Alice', 'Bob'],
    'Age': [25, 30]
})

df2 = pd.DataFrame({
    'Name': ['Charlie', 'David'],
    'Age': [35, 40]
})

concat_df = pd.concat([df1, df2])
print(concat_df)   # 按行进行拼接

六、总结

Pandas中的DataFrame是进行数据分析的强大工具,通过掌握DataFrame的创建、基本操作、索引、处理缺失值、数据聚合和合并等功能,可以极大地提升数据分析的效率和效果。希望本文对你理解和使用DataFrame有所帮助,更多高级功能和技巧需要在实际操作中不断探索和积累。

相关推荐
程序员晚枫4 小时前
Python处理Excel的5个“神仙库”,办公效率直接翻倍!
python·excel
LateFrames4 小时前
C# 中,0.1 在什么情况下不等于 0.1 ?
开发语言·c#
froginwe114 小时前
SciPy 图结构
开发语言
Larry_Yanan4 小时前
QML学习笔记(五十二)QML与C++交互:数据转换——时间和日期
开发语言·c++·笔记·qt·学习·ui·交互
歪歪1004 小时前
详细介绍一下“集中同步+分布式入库”方案的具体实现步骤
开发语言·前端·分布式·后端·信息可视化
小兜全糖(xdqt)5 小时前
python ppt转pdf以及图片提取
python·pdf·powerpoint
前端世界5 小时前
用Python打造智能成绩分析系统:从异常处理到断言验证的全流程实战
服务器·数据库·python
yaoxin5211235 小时前
229. Java 集合 - 操作集合中的多个元素(批量操作)
java·开发语言·python
岁岁岁平安5 小时前
python 配置pip镜像源
python
在人间负债^5 小时前
从Python到仓颉:核心项目内容迁移实践
开发语言·python·鸿蒙·仓颉