LDA算法进行相似性分析

复制代码
import gensim
from gensim import corpora
from gensim.models import LdaModel
from gensim.matutils import cossim
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import string

# 如果您尚未下载nltk的停用词列表,请取消下面的注释并运行一次
# nltk.download('punkt')
# nltk.download('stopwords')

# 数据预处理函数
def preprocess(text):
    stop_words = set(stopwords.words('english'))
    tokens = word_tokenize(text.lower())
    tokens = [word for word in tokens if word.isalpha()]  # 仅保留字母
    tokens = [word for word in tokens if word not in stop_words]  # 去除停用词
    return tokens

# 示例文档
documents = [
    "Text processing using LDA is interesting.",
    "Another document example for LDA.",
    "Text mining and natural language processing.",
    "LDA helps in topic modeling and finding patterns.",
    "This document is for testing LDA similarity."
]

# 数据预处理
texts = [preprocess(doc) for doc in documents]

# 创建词典
dictionary = corpora.Dictionary(texts)

# 转换为词袋模型
corpus = [dictionary.doc2bow(text) for text in texts]

# 训练LDA模型
num_topics = 2
lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15)

# 对新文档进行主题分布提取
new_doc = "New text for testing similarity with LDA."
new_doc_preprocessed = preprocess(new_doc)
new_doc_bow = dictionary.doc2bow(new_doc_preprocessed)
new_doc_topics = lda_model.get_document_topics(new_doc_bow)

# 获取原始文档的主题分布
doc_topics = [lda_model.get_document_topics(doc_bow) for doc_bow in corpus]

# 计算新文档与每个原始文档的相似性
similarities = []
for i, doc_topic in enumerate(doc_topics):
    similarity = cossim(new_doc_topics, doc_topic)
    similarities.append((i, similarity))

# 输出相似性结果
print("Similarity between new document and each original document:")
for i, similarity in similarities:
    print(f"Document {i}: Similarity = {similarity}")

import gensim

from gensim import corpora

from gensim.models import LdaModel

from gensim.matutils import cossim

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

import string

如果您尚未下载nltk的停用词列表,请取消下面的注释并运行一次

nltk.download('punkt')

nltk.download('stopwords')

数据预处理函数

def preprocess(text):

stop_words = set(stopwords.words('english'))

tokens = word_tokenize(text.lower())

tokens = [word for word in tokens if word.isalpha()] # 仅保留字母

tokens = [word for word in tokens if word not in stop_words] # 去除停用词

return tokens

示例文档

documents = [

"Text processing using LDA is interesting.",

"Another document example for LDA.",

"Text mining and natural language processing.",

"LDA helps in topic modeling and finding patterns.",

"This document is for testing LDA similarity."

]

数据预处理

texts = [preprocess(doc) for doc in documents]

创建词典

dictionary = corpora.Dictionary(texts)

转换为词袋模型

corpus = [dictionary.doc2bow(text) for text in texts]

训练LDA模型

num_topics = 2

lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15)

对新文档进行主题分布提取

new_doc = "New text for testing similarity with LDA."

new_doc_preprocessed = preprocess(new_doc)

new_doc_bow = dictionary.doc2bow(new_doc_preprocessed)

new_doc_topics = lda_model.get_document_topics(new_doc_bow)

获取原始文档的主题分布

doc_topics = [lda_model.get_document_topics(doc_bow) for doc_bow in corpus]

计算新文档与每个原始文档的相似性

similarities = []

for i, doc_topic in enumerate(doc_topics):

similarity = cossim(new_doc_topics, doc_topic)

similarities.append((i, similarity))

输出相似性结果

print("Similarity between new document and each original document:")

for i, similarity in similarities:

print(f"Document {i}: Similarity = {similarity}")

相关推荐
饺子大魔王的男人1 天前
Remote JVM Debug+cpolar 让 Java 远程调试超丝滑
java·开发语言·jvm
兩尛1 天前
c++知识点2
开发语言·c++
fengfuyao9851 天前
海浪PM谱及波形的Matlab仿真实现
开发语言·matlab
xiaoye-duck1 天前
C++ string 底层原理深度解析 + 模拟实现(下)——面试 / 开发都适用
开发语言·c++·stl
Hx_Ma161 天前
SpringMVC框架提供的转发和重定向
java·开发语言·servlet
期待のcode1 天前
原子操作类LongAdder
java·开发语言
A_nanda1 天前
c# MOdbus rto读写串口,如何不相互影响
算法·c#·多线程
lly2024061 天前
C 语言中的结构体
开发语言
JAVA+C语言1 天前
如何优化 Java 多主机通信的性能?
java·开发语言·php
青岑CTF1 天前
攻防世界-Ics-05-胎教版wp
开发语言·安全·web安全·网络安全·php