LDA算法进行相似性分析

复制代码
import gensim
from gensim import corpora
from gensim.models import LdaModel
from gensim.matutils import cossim
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import string

# 如果您尚未下载nltk的停用词列表,请取消下面的注释并运行一次
# nltk.download('punkt')
# nltk.download('stopwords')

# 数据预处理函数
def preprocess(text):
    stop_words = set(stopwords.words('english'))
    tokens = word_tokenize(text.lower())
    tokens = [word for word in tokens if word.isalpha()]  # 仅保留字母
    tokens = [word for word in tokens if word not in stop_words]  # 去除停用词
    return tokens

# 示例文档
documents = [
    "Text processing using LDA is interesting.",
    "Another document example for LDA.",
    "Text mining and natural language processing.",
    "LDA helps in topic modeling and finding patterns.",
    "This document is for testing LDA similarity."
]

# 数据预处理
texts = [preprocess(doc) for doc in documents]

# 创建词典
dictionary = corpora.Dictionary(texts)

# 转换为词袋模型
corpus = [dictionary.doc2bow(text) for text in texts]

# 训练LDA模型
num_topics = 2
lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15)

# 对新文档进行主题分布提取
new_doc = "New text for testing similarity with LDA."
new_doc_preprocessed = preprocess(new_doc)
new_doc_bow = dictionary.doc2bow(new_doc_preprocessed)
new_doc_topics = lda_model.get_document_topics(new_doc_bow)

# 获取原始文档的主题分布
doc_topics = [lda_model.get_document_topics(doc_bow) for doc_bow in corpus]

# 计算新文档与每个原始文档的相似性
similarities = []
for i, doc_topic in enumerate(doc_topics):
    similarity = cossim(new_doc_topics, doc_topic)
    similarities.append((i, similarity))

# 输出相似性结果
print("Similarity between new document and each original document:")
for i, similarity in similarities:
    print(f"Document {i}: Similarity = {similarity}")

import gensim

from gensim import corpora

from gensim.models import LdaModel

from gensim.matutils import cossim

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

import string

如果您尚未下载nltk的停用词列表,请取消下面的注释并运行一次

nltk.download('punkt')

nltk.download('stopwords')

数据预处理函数

def preprocess(text):

stop_words = set(stopwords.words('english'))

tokens = word_tokenize(text.lower())

tokens = [word for word in tokens if word.isalpha()] # 仅保留字母

tokens = [word for word in tokens if word not in stop_words] # 去除停用词

return tokens

示例文档

documents = [

"Text processing using LDA is interesting.",

"Another document example for LDA.",

"Text mining and natural language processing.",

"LDA helps in topic modeling and finding patterns.",

"This document is for testing LDA similarity."

]

数据预处理

texts = [preprocess(doc) for doc in documents]

创建词典

dictionary = corpora.Dictionary(texts)

转换为词袋模型

corpus = [dictionary.doc2bow(text) for text in texts]

训练LDA模型

num_topics = 2

lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15)

对新文档进行主题分布提取

new_doc = "New text for testing similarity with LDA."

new_doc_preprocessed = preprocess(new_doc)

new_doc_bow = dictionary.doc2bow(new_doc_preprocessed)

new_doc_topics = lda_model.get_document_topics(new_doc_bow)

获取原始文档的主题分布

doc_topics = [lda_model.get_document_topics(doc_bow) for doc_bow in corpus]

计算新文档与每个原始文档的相似性

similarities = []

for i, doc_topic in enumerate(doc_topics):

similarity = cossim(new_doc_topics, doc_topic)

similarities.append((i, similarity))

输出相似性结果

print("Similarity between new document and each original document:")

for i, similarity in similarities:

print(f"Document {i}: Similarity = {similarity}")

相关推荐
技术拾荒者20 分钟前
c#加密证件号的中间部分,改为*号
c#
香蕉可乐荷包蛋30 分钟前
Python面试问题
开发语言·python·面试
ErizJ39 分钟前
Golang|分布式索引架构
开发语言·分布式·后端·架构·golang
.生产的驴40 分钟前
SpringBoot 接口国际化i18n 多语言返回 中英文切换 全球化 语言切换
java·开发语言·spring boot·后端·前端框架
八股文领域大手子1 小时前
深入浅出限流算法(三):追求极致精确的滑动日志
开发语言·数据结构·算法·leetcode·mybatis·哈希算法
weixin_423995001 小时前
unity 读取csv
unity·c#
几度泥的菜花2 小时前
优雅实现网页弹窗提示功能:JavaScript与CSS完美结合
开发语言·javascript·css
weixin_307779132 小时前
AWS Glue ETL设计与调度最佳实践
开发语言·数据仓库·云计算·etl·aws
绿龙术士2 小时前
C#核心知识
c#·.net
wkj0012 小时前
java 和 C#操作数据库对比
java·数据库·c#