LDA算法进行相似性分析

复制代码
import gensim
from gensim import corpora
from gensim.models import LdaModel
from gensim.matutils import cossim
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import string

# 如果您尚未下载nltk的停用词列表,请取消下面的注释并运行一次
# nltk.download('punkt')
# nltk.download('stopwords')

# 数据预处理函数
def preprocess(text):
    stop_words = set(stopwords.words('english'))
    tokens = word_tokenize(text.lower())
    tokens = [word for word in tokens if word.isalpha()]  # 仅保留字母
    tokens = [word for word in tokens if word not in stop_words]  # 去除停用词
    return tokens

# 示例文档
documents = [
    "Text processing using LDA is interesting.",
    "Another document example for LDA.",
    "Text mining and natural language processing.",
    "LDA helps in topic modeling and finding patterns.",
    "This document is for testing LDA similarity."
]

# 数据预处理
texts = [preprocess(doc) for doc in documents]

# 创建词典
dictionary = corpora.Dictionary(texts)

# 转换为词袋模型
corpus = [dictionary.doc2bow(text) for text in texts]

# 训练LDA模型
num_topics = 2
lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15)

# 对新文档进行主题分布提取
new_doc = "New text for testing similarity with LDA."
new_doc_preprocessed = preprocess(new_doc)
new_doc_bow = dictionary.doc2bow(new_doc_preprocessed)
new_doc_topics = lda_model.get_document_topics(new_doc_bow)

# 获取原始文档的主题分布
doc_topics = [lda_model.get_document_topics(doc_bow) for doc_bow in corpus]

# 计算新文档与每个原始文档的相似性
similarities = []
for i, doc_topic in enumerate(doc_topics):
    similarity = cossim(new_doc_topics, doc_topic)
    similarities.append((i, similarity))

# 输出相似性结果
print("Similarity between new document and each original document:")
for i, similarity in similarities:
    print(f"Document {i}: Similarity = {similarity}")

import gensim

from gensim import corpora

from gensim.models import LdaModel

from gensim.matutils import cossim

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

import string

如果您尚未下载nltk的停用词列表,请取消下面的注释并运行一次

nltk.download('punkt')

nltk.download('stopwords')

数据预处理函数

def preprocess(text):

stop_words = set(stopwords.words('english'))

tokens = word_tokenize(text.lower())

tokens = [word for word in tokens if word.isalpha()] # 仅保留字母

tokens = [word for word in tokens if word not in stop_words] # 去除停用词

return tokens

示例文档

documents = [

"Text processing using LDA is interesting.",

"Another document example for LDA.",

"Text mining and natural language processing.",

"LDA helps in topic modeling and finding patterns.",

"This document is for testing LDA similarity."

]

数据预处理

texts = [preprocess(doc) for doc in documents]

创建词典

dictionary = corpora.Dictionary(texts)

转换为词袋模型

corpus = [dictionary.doc2bow(text) for text in texts]

训练LDA模型

num_topics = 2

lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=15)

对新文档进行主题分布提取

new_doc = "New text for testing similarity with LDA."

new_doc_preprocessed = preprocess(new_doc)

new_doc_bow = dictionary.doc2bow(new_doc_preprocessed)

new_doc_topics = lda_model.get_document_topics(new_doc_bow)

获取原始文档的主题分布

doc_topics = [lda_model.get_document_topics(doc_bow) for doc_bow in corpus]

计算新文档与每个原始文档的相似性

similarities = []

for i, doc_topic in enumerate(doc_topics):

similarity = cossim(new_doc_topics, doc_topic)

similarities.append((i, similarity))

输出相似性结果

print("Similarity between new document and each original document:")

for i, similarity in similarities:

print(f"Document {i}: Similarity = {similarity}")

相关推荐
长安——归故李3 分钟前
【modbus学习】
java·c语言·c++·学习·算法·c#
索迪迈科技5 分钟前
STL库——map/set(类函数学习)
开发语言·c++·学习
ForteScarlet27 分钟前
Kotlin 2.2.20 现已发布!下个版本的特性抢先看!
android·开发语言·kotlin·jetbrains
小码编匠27 分钟前
WPF 多线程更新UI的两种实用方案
后端·c#·.net
anlogic36 分钟前
Java基础 9.10
java·开发语言·算法
yongche_shi40 分钟前
第二篇:Python“装包”与“拆包”的艺术:可迭代对象、迭代器、生成器
开发语言·python·面试·面试宝典·生成器·拆包·装包
蜗牛~turbo1 小时前
金蝶云星空 调价表取历史价格
java·数据库·sql·c#·database
Elastic 中国社区官方博客1 小时前
介绍 Python Elasticsearch Client 的 ES|QL 查询构建器
大数据·开发语言·数据库·python·elasticsearch·搜索引擎·全文检索
Hóng xīng qiáo1 小时前
swVBA自学笔记014、Lisp适合对SolidWorks进行二次开发吗 ?
开发语言·笔记·lisp
带鱼吃猫1 小时前
C++的诗行:一文读懂C++的继承机制
开发语言·c++·学习·visual studio