Mercer 条件的基本概念及证明

Mercer 条件 是核函数理论中的一个重要概念,它确保了一个给定的对称函数可以表示为某个高维特征空间中的内积。这个条件在支持向量机(SVM)和其他基于核方法的机器学习算法中非常重要。


文章目录

  • 基本介绍
      • [Mercer 条件的定义](#Mercer 条件的定义)
      • [Mercer 定理](#Mercer 定理)
      • 实际应用
  • 证明
      • [1. 对称核函数的定义](#1. 对称核函数的定义)
      • [2. 半正定性](#2. 半正定性)
      • [3. 积分方程](#3. 积分方程)
      • [4. 特征值和特征函数](#4. 特征值和特征函数)
      • [5. Mercer 定理](#5. Mercer 定理)
      • [6. 证明细节](#6. 证明细节)

基本介绍

Mercer 条件的定义

设 K ( x , y ) K(x, y) K(x,y) 是一个定义在 X × X \mathcal{X} \times \mathcal{X} X×X 上的对称函数,其中 X \mathcal{X} X 是一个紧致的度量空间。Mercer 条件要求 K ( x , y ) K(x, y) K(x,y) 满足以下性质:

对于任意有限输入集 { x 1 , x 2 , ... , x n } ⊂ X \{x_1, x_2, \ldots, x_n\} \subset \mathcal{X} {x1,x2,...,xn}⊂X 和任意实值函数 f f f,有:

∬ K ( x , y ) f ( x ) f ( y )   d x   d y ≥ 0 \iint K(x, y) f(x) f(y) \, dx \, dy \geq 0 ∬K(x,y)f(x)f(y)dxdy≥0

这意味着 K ( x , y ) K(x, y) K(x,y) 是一个半正定函数。

Mercer 定理

根据 Mercer 定理,如果 K ( x , y ) K(x, y) K(x,y) 满足 Mercer 条件,那么它可以表示为某个特征映射 ϕ \phi ϕ 的内积,即:

K ( x , y ) = ∑ i = 1 ∞ λ i ϕ i ( x ) ϕ i ( y ) K(x, y) = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y) K(x,y)=i=1∑∞λiϕi(x)ϕi(y)

其中, λ i \lambda_i λi 是非负的特征值, ϕ i \phi_i ϕi 是对应的特征函数。这些特征函数构成了一个正交基,可以用来表示高维特征空间中的数据。

实际应用

在实际应用中,Mercer 条件确保了可以使用核函数 K ( x , y ) K(x, y) K(x,y) 来隐式地计算高维空间中的内积,而无需显式地计算特征向量 ϕ ( x ) \phi(x) ϕ(x) 和 ϕ ( y ) \phi(y) ϕ(y)。这使得可以在低维空间中进行高效的计算,同时利用高维空间的特性来处理复杂的非线性问题。

常见的满足 Mercer 条件的核函数包括:

  1. 线性核函数 : K ( x , y ) = ⟨ x , y ⟩ K(x, y) = \langle x, y \rangle K(x,y)=⟨x,y⟩
  2. 多项式核函数 : K ( x , y ) = ( ⟨ x , y ⟩ + c ) d K(x, y) = (\langle x, y \rangle + c)^d K(x,y)=(⟨x,y⟩+c)d
  3. 高斯径向基函数(RBF)核函数 : K ( x , y ) = exp ⁡ ( − ∥ x − y ∥ 2 2 σ 2 ) K(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right) K(x,y)=exp(−2σ2∥x−y∥2)
  4. Sigmoid核函数 : K ( x , y ) = tanh ⁡ ( α ⟨ x , y ⟩ + c ) K(x, y) = \tanh(\alpha \langle x, y \rangle + c) K(x,y)=tanh(α⟨x,y⟩+c)

证明

Mercer 条件的证明 涉及到泛函分析和积分方程理论, 依赖于对称核函数的性质和紧致度量空间上的积分方程理论。

1. 对称核函数的定义

设 K ( x , y ) K(x, y) K(x,y) 是一个定义在紧致度量空间 X \mathcal{X} X 上的对称函数,即 K ( x , y ) = K ( y , x ) K(x, y) = K(y, x) K(x,y)=K(y,x)。

2. 半正定性

Mercer 条件要求 K ( x , y ) K(x, y) K(x,y) 是半正定的,这意味着对于任意有限输入集 { x 1 , x 2 , ... , x n } ⊂ X \{x_1, x_2, \ldots, x_n\} \subset \mathcal{X} {x1,x2,...,xn}⊂X 和任意实值函数 f f f,有:

∬ K ( x , y ) f ( x ) f ( y )   d x   d y ≥ 0 \iint K(x, y) f(x) f(y) \, dx \, dy \geq 0 ∬K(x,y)f(x)f(y)dxdy≥0

3. 积分方程

考虑 K ( x , y ) K(x, y) K(x,y) 作为积分算子 T T T 的核,定义为:

( T f ) ( x ) = ∫ K ( x , y ) f ( y )   d y (Tf)(x) = \int K(x, y) f(y) \, dy (Tf)(x)=∫K(x,y)f(y)dy

4. 特征值和特征函数

根据积分方程理论,对称核函数 K ( x , y ) K(x, y) K(x,y) 可以分解为特征值和特征函数的级数展开:

K ( x , y ) = ∑ i = 1 ∞ λ i ϕ i ( x ) ϕ i ( y ) K(x, y) = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y) K(x,y)=i=1∑∞λiϕi(x)ϕi(y)

其中, λ i \lambda_i λi 是非负的特征值, ϕ i \phi_i ϕi 是对应的特征函数,并且这些特征函数构成了一个正交基。

5. Mercer 定理

Mercer 定理表明,如果 K ( x , y ) K(x, y) K(x,y) 满足 Mercer 条件,那么它可以表示为上述特征值和特征函数的级数展开形式。这意味着 K ( x , y ) K(x, y) K(x,y) 可以表示为某个高维特征空间中的内积。

6. 证明细节

证明的具体细节涉及到泛函分析中的谱理论和积分方程的解法。通过对称核函数的性质和紧致度量空间上的积分方程理论,可以证明 K ( x , y ) K(x, y) K(x,y) 的半正定性保证了其可以分解为特征值和特征函数的级数展开形式。


相关推荐
绫语宁4 小时前
以防你不知道LLM小技巧!为什么 LLM 不适合多任务推理?
人工智能·后端
霍格沃兹测试开发学社-小明4 小时前
AI来袭:自动化测试在智能实战中的华丽转身
运维·人工智能·python·测试工具·开源
大千AI助手4 小时前
Softmax函数:深度学习中的多类分类基石与进化之路
人工智能·深度学习·机器学习·分类·softmax·激活函数·大千ai助手
韩曙亮5 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ② ( 深度学习 -> 机器视觉 )
人工智能·深度学习·学习·ai·机器视觉
九千七5265 小时前
sklearn学习(3)数据降维
人工智能·python·学习·机器学习·sklearn
黑客思维者5 小时前
Salesforce Einstein GPT 人机协同运营的核心应用场景与工作流分析
人工智能·gpt·深度学习·salesforce·rag·人机协同·einstein gpt
玦尘、5 小时前
《统计学习方法》第5章——决策树(上)【学习笔记】
决策树·机器学习
多恩Stone5 小时前
【ModelScope-1】数据集稀疏检出(Sparse Checkout)来下载指定目录
人工智能·python·算法·aigc
郭庆汝5 小时前
(七)自然语言处理笔记——Ai医生
人工智能·笔记·自然语言处理
生而为虫5 小时前
28.Python处理图像
人工智能·python·计算机视觉·pillow·pygame