如何使用uer做多分类任务

如何使用uer做多分类任务

语料集下载

找到这里点击即可

里面是这有json文件的

因此我们对此要做一些处理,将其转为tsv格式

python 复制代码
# -*- coding: utf-8 -*-
import json
import csv
import chardet

# 检测文件编码
def detect_encoding(file_path):
    with open(file_path, 'rb') as f:
        raw_data = f.read()
    return chardet.detect(raw_data)['encoding']

# 输入文件名
input_file = './datasets/iflytek/train.json'
# 输出文件名
output_file = './datasets/iflytek/train.tsv'

# 检测输入文件的编码格式
file_encoding = detect_encoding(input_file)

# 打开输入的 JSON 文件和输出的 TSV 文件
with open(input_file, 'r', encoding=file_encoding) as json_file, open(output_file, 'w', newline='', encoding='utf-8') as tsv_file:
    # 准备 TSV 写入器
    tsv_writer = csv.writer(tsv_file, delimiter='\t')

    # 写入表头(列表['label', 'label_des', 'sentence']中要注意根据json文件中的键值做更换)
    tsv_writer.writerow(['label', 'label_des', 'sentence'])

    # 逐行读取 JSON 文件
    for line in json_file:
        try:
            # 解析每一行的 JSON 数据
            json_data = json.loads(line.strip())
            # 写入到 TSV 文件中,(列表['label', 'label_des', 'sentence']中要注意根据json文件中的键值做更换)
            tsv_writer.writerow([json_data['label'], json_data['label_des'], json_data['sentence']])
        except json.JSONDecodeError as e:
            print(f"无法解析的行: {line.strip()}")
            print(f"错误信息: {e}")

print(f"JSON 文件已成功转换为 TSV 文件,输入文件编码: {file_encoding}")

接着呢要把所有tsv文件的sentence表头名改成text_a,不然运行uer框架会报错,原因请看源代码逻辑

python 复制代码
def read_dataset(args, path):
    dataset, columns = [], {}
    with open(path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")
            tgt = int(line[columns["label"]])
            if args.soft_targets and "logits" in columns.keys():
                soft_tgt = [float(value) for value in line[columns["logits"]].split(" ")]
            if "text_b" not in columns:  # Sentence classification.
                text_a = line[columns["text_a"]]
                src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
                seg = [1] * len(src)
            else:  # Sentence-pair classification.
                text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
                src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
                src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
                src = src_a + src_b
                seg = [1] * len(src_a) + [2] * len(src_b)

            if len(src) > args.seq_length:
                src = src[: args.seq_length]
                seg = seg[: args.seq_length]
            if len(src) < args.seq_length:
                PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
                src += [PAD_ID] * (args.seq_length - len(src))
                seg += [0] * (args.seq_length - len(seg))
            if args.soft_targets and "logits" in columns.keys():
                dataset.append((src, tgt, seg, soft_tgt))
            else:
                dataset.append((src, tgt, seg))

    return dataset

这里规定好了表头名只有label,text_a,text_b

搞完之后进入训练代码,我的显存只有16G,因此

python 复制代码
python finetune/run_classifier.py --pretrained_model_path models/cluecorpussmall_roberta_wwm_large_seq512_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/large_config.json --train_path datasets/iflytek/train.tsv --dev_path datasets/iflytek/dev.tsv --output_model_path models/iflytek_classifier_model.bin --epochs_num 3 --batch_size 16 --seq_length 128


这里可以看到只有61.49的正确率,其实是因为显存还不够,训练不了那么大的,标准的参数应该设置为batch_size=32 seq_length=256

有能力的可以更改参数进行训练

接着来预测

python 复制代码
python inference/run_classifier_infer.py --load_model_path models/iflytek_classifier_model.bin --vocab_path models/google_zh_vocab.txt --config_path models/bert/large_config.json --test_path datasets/iflytek/test.tsv --prediction_path datasets/iflytek/prediction.tsv --seq_length 256 --labels_num 119

最后自行查看预测效果

相关推荐
JXL186013 分钟前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉13 分钟前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
岁月静好202517 分钟前
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
人工智能·机器学习
说私域20 分钟前
基于开源 AI 大模型 AI 智能名片 S2B2C 商城小程序视角下的企业组织能力建设与破圈升级
人工智能·小程序
2401_8588698020 分钟前
K近邻算法(knn)
人工智能
aneasystone本尊33 分钟前
学习 Coze Studio 的知识库入库逻辑(续)
人工智能
renhongxia134 分钟前
大模型微调RAG、LORA、强化学习
人工智能·深度学习·算法·语言模型
张较瘦_41 分钟前
[论文阅读] 人工智能 | 当Hugging Face遇上GitHub:预训练语言模型的跨平台同步难题与解决方案
论文阅读·人工智能·github
Cloud Traveler1 小时前
从 0 到 1 开发校园二手交易系统:飞算 JavaAI 全流程实战
人工智能·java开发·飞算javaai炫技赛
m0_603888711 小时前
Infusing fine-grained visual knowledge to Vision-Language Models
人工智能·ai·语言模型·自然语言处理·论文速览