【MIT 6.5840/6.824】Lab1 MapReduce

MapReduce

6.5840/6.824 Lab汇总

本文对应的Lab版本为MIT6.5840-Spring2024的Lab1

本博客只提供思路,不会公开任何代码

本lab耗时约6h,码量约500行

MapReduce思想

MapReduce的思想属于是比较简单的,分为两个阶段:

Map阶段将用户指定的输入文件(通常存放于分布式文件系统中,不过本Lab使用本地文件系统来代替),利用用户编写的map函数,将输入文件拆分为(key,value)形式,输出到若干个中间文件中(这些中间文件存放在map函数所运行的机器中,假设后面运行reduce函数的worker有nReduce个,那么每个运行map函数的worker,就需要把拆分出来的kv对分为nReduce个中间文件来存放,可在key上做hash来划分kv对到对应的中间文件中)

Reduce阶段将中间文件读取出来,并按照key进行排序,然后调用用户提供的reduce函数,将相同key的所有value进行聚合,最后输出到文件中。假设存在nReduce个reduce任务,那么最后会产生nReduce个输出文件。

MapReduce框架中,存在一个coordinator(论文里也叫master),用于协调map任务与reduce任务,同时,需要考虑任务crash的问题(重启任务)。

实现思路

代码主要分为两部分:coordinator.go和worker.go

coordinator主要用于回应worker的rpc请求,分为两种请求(分配任务与任务反馈)。coordinator需要维护每一个任务的状态(可使用map),当收到分配任务的请求时,它找出一个未完成的任务并分配给worker(也是通过rpc),指定该任务的类型,并传输所需参数;当收到worker的任务反馈时,判断任务是否成功,并更新任务状态。

同时,coordinator需要监控worker,如果一个worker超过10s还没有回复,那么认为该worker已经crash了,需要重新分配这个worker所运行的任务。

worker则是打工人,需要不断询问coordinator是否有任务做,对于map任务与reduce任务,进行不同的逻辑处理,按照MapReduce框架的思想进行实现就可以了。

感受

第一次使用go,2小时就可以速成,变量声明与赋值都很方便(像python),但它是类型安全的编译型语言,不会产生运行时的类型错误,写起来非常方便。同时,不像C++一样需要内存管理,因为存在gc机制。

当然,目前看到的只是冰山一角,还需要继续深入学习思考。

相关推荐
qq_124987075310 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Coder_Boy_13 小时前
基于Spring AI的分布式在线考试系统-事件处理架构实现方案
人工智能·spring boot·分布式·spring
袁煦丞 cpolar内网穿透实验室14 小时前
远程调试内网 Kafka 不再求运维!cpolar 内网穿透实验室第 791 个成功挑战
运维·分布式·kafka·远程工作·内网穿透·cpolar
人间打气筒(Ada)14 小时前
GlusterFS实现KVM高可用及热迁移
分布式·虚拟化·kvm·高可用·glusterfs·热迁移
xu_yule14 小时前
Redis存储(15)Redis的应用_分布式锁_Lua脚本/Redlock算法
数据库·redis·分布式
十月南城18 小时前
Hadoop基础认知——HDFS、YARN、MapReduce在现代体系中的位置与价值
hadoop·hdfs·mapreduce
難釋懷18 小时前
分布式锁的原子性问题
分布式
ai_xiaogui20 小时前
【开源前瞻】从“咸鱼”到“超级个体”:谈谈 Panelai 分布式子服务器管理系统的设计架构与 UI 演进
服务器·分布式·架构·分布式架构·panelai·开源面板·ai工具开发
凯子坚持 c20 小时前
如何基于 CANN 原生能力,构建一个支持 QoS 感知的 LLM 推理调度器
分布式