【45 Pandas+Pyecharts | 去哪儿海南旅游攻略数据分析可视化】

文章目录

  • [🏳️‍🌈 1. 导入模块](#🏳️‍🌈 1. 导入模块)
  • [🏳️‍🌈 2. Pandas数据处理](#🏳️‍🌈 2. Pandas数据处理)
    • [2.1 读取数据](#2.1 读取数据)
    • [2.2 查看数据信息](#2.2 查看数据信息)
    • [2.3 日期处理,提取年份、月份](#2.3 日期处理,提取年份、月份)
    • [2.4 经费处理](#2.4 经费处理)
    • [2.5 天数处理](#2.5 天数处理)
  • [🏳️‍🌈 3. Pyecharts数据可视化](#🏳️‍🌈 3. Pyecharts数据可视化)
    • [3.1 出发日期_年份分布](#3.1 出发日期_年份分布)
    • [3.2 出发日期_月份分布](#3.2 出发日期_月份分布)
    • [3.3 出行天数分布](#3.3 出行天数分布)
    • [3.4 旅游途经点分布](#3.4 旅游途经点分布)
    • [3.5 出行团体占比](#3.5 出行团体占比)
    • [3.6 人均消费区间占比](#3.6 人均消费区间占比)
    • [3.7 出行类型标签统计](#3.7 出行类型标签统计)
    • [3.8 旅游行程景点词云](#3.8 旅游行程景点词云)
  • [🏳️‍🌈 4. 可视化项目源码+数据](#🏳️‍🌈 4. 可视化项目源码+数据)

大家好,我是 👉【Python当打之年(点击跳转)】

本期利用 python 分析一下**「去哪网海南旅游攻略数据」** ,看看海南哪些旅游景点最受大家喜爱,哪个时间段旅游的朋友比较多,最受大家欢迎的旅行方式有哪些,以及旅行目的 等,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

  • Pandas --- 数据处理
  • Pyecharts --- 数据可视化

🏳️‍🌈 1. 导入模块

python 复制代码
import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Scatter
from pyecharts.charts import WordCloud
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')

🏳️‍🌈 2. Pandas数据处理

2.1 读取数据

python 复制代码
df = pd.read_excel("./去哪网海南攻略数据.xlsx")

2.2 查看数据信息

python 复制代码
df.info()

2.3 日期处理,提取年份、月份

python 复制代码
df['出发日期_年'] = [int(i.split('-')[0]) for i in df['出发日期'].tolist()]
df['出发日期_月'] = [int(i.split('-')[1]) for i in df['出发日期'].tolist()]

2.4 经费处理

python 复制代码
fee = [int(i.replace('人均','').replace('元','')) for i in df_fee['人均消费'].tolist()]
df_fee['人均消费'] = fee

2.5 天数处理

python 复制代码
df['天数'] = df['天数'].str[1:-1]
df['天数'] = df['天数'].astype('int')

🏳️‍🌈 3. Pyecharts数据可视化

3.1 出发日期_年份分布

python 复制代码
def get_chart1():
    chart = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis("", y_data)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="1-出发日期_年",
                pos_top='2%',
                pos_left="center",
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),
            yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),
            visualmap_opts=opts.VisualMapOpts(is_show=False,),
        )
    )
    return chart
  • 2014、2015、2016年的攻略数量相较于其他年份明显较多、2017-2021年趋于平稳。

  • 近三年时间大概由于时间比较近,加之疫情原因,所以攻略数量较少。

3.2 出发日期_月份分布

python 复制代码
def get_chart2():
    chart = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis("", y_data)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="2-每月攻略数量",
                pos_top='2%',
                pos_left="center",
            ),
            visualmap_opts=opts.VisualMapOpts(is_show=False),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )
    return chart
  • 1月、12月的攻略数比较高,大概占到了总数量的20%,反而6月、7月、8月的数量相对低一些。

3.3 出行天数分布

  • 从出行天数上来看,大多集中在一周(5天)左右,也有少量半个月、一个月的旅游时间。

3.4 旅游途经点分布

  • 首当其冲当然是三亚(1853)啦!远超排在第二的海口(182),基本是10倍之多,紧随其后的是陵水(108)、万宁(60)、文昌(46)等地。

3.5 出行团体占比

python 复制代码
def get_chart3():
    chart = (
        Pie()
        .add("", [list(z) for z in zip(x_data, y_data)])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="5-出行团体占比",
                pos_top='2%',
                pos_left="center"
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(is_show=False,),
        )
        .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
    )
    return chart
  • 出行团体方面大多以好友(22%)、情侣(21%)和家庭(20%)团体居多。

3.6 人均消费区间占比

  • 人均消费3000-5000元居多,占比46%,1000-3000元占比28%。

3.7 出行类型标签统计

3.8 旅游行程景点词云

python 复制代码
def get_chart4():
    chart = (
        WordCloud()
        .add("",words,word_size_range=[10,50])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                    title='8-旅游行程景点词云',
                    pos_top='2%',
                    pos_left="center",
                ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(is_show=False),
        )
    )
    return chart
  • 亚龙湾、三亚湾、蜈支洲岛、大东海、天涯海角、海棠湾等景点更受驴友的喜爱。

🏳️‍🌈 4. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏 也可以分享注明出处)让更多人知道。

相关推荐
小L爱科研1 小时前
4.7/Q1,GBD数据库最新文章解读
数据库·机器学习·数据分析·回归·健康医疗
kngines2 小时前
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.4 模型部署与定期评估
postgresql·数据分析·存储过程·jsonb·pg_cron·ks值·影子测试机制
想看雪的瓜2 小时前
Nature图形复现—两种快速绘制热图的方法
信息可视化·数据挖掘·数据分析
镜舟科技3 小时前
湖仓一体架构在金融典型数据分析场景中的实践
starrocks·金融·架构·数据分析·湖仓一体·物化视图·lakehouse
生信大杂烩5 小时前
R语言绘图 | 渐变火山图
数据分析·r语言
Hello world.Joey6 小时前
数据挖掘入门-二手车交易价格预测
人工智能·python·数据挖掘·数据分析·conda·pandas
kngines6 小时前
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.3 风险指标可视化监控
postgresql·数据分析·区块链·逾期率·不良贷款率·客户信用评分
liuweidong08026 小时前
【Pandas】pandas DataFrame cumprod
pandas
Narutolxy15 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
Ai尚研修-贾莲18 小时前
Python语言在地球科学交叉领域中的应用——从数据可视化到常见数据分析方法的使用【实例操作】
python·信息可视化·数据分析·地球科学