【45 Pandas+Pyecharts | 去哪儿海南旅游攻略数据分析可视化】

文章目录

  • [🏳️‍🌈 1. 导入模块](#🏳️‍🌈 1. 导入模块)
  • [🏳️‍🌈 2. Pandas数据处理](#🏳️‍🌈 2. Pandas数据处理)
    • [2.1 读取数据](#2.1 读取数据)
    • [2.2 查看数据信息](#2.2 查看数据信息)
    • [2.3 日期处理,提取年份、月份](#2.3 日期处理,提取年份、月份)
    • [2.4 经费处理](#2.4 经费处理)
    • [2.5 天数处理](#2.5 天数处理)
  • [🏳️‍🌈 3. Pyecharts数据可视化](#🏳️‍🌈 3. Pyecharts数据可视化)
    • [3.1 出发日期_年份分布](#3.1 出发日期_年份分布)
    • [3.2 出发日期_月份分布](#3.2 出发日期_月份分布)
    • [3.3 出行天数分布](#3.3 出行天数分布)
    • [3.4 旅游途经点分布](#3.4 旅游途经点分布)
    • [3.5 出行团体占比](#3.5 出行团体占比)
    • [3.6 人均消费区间占比](#3.6 人均消费区间占比)
    • [3.7 出行类型标签统计](#3.7 出行类型标签统计)
    • [3.8 旅游行程景点词云](#3.8 旅游行程景点词云)
  • [🏳️‍🌈 4. 可视化项目源码+数据](#🏳️‍🌈 4. 可视化项目源码+数据)

大家好,我是 👉【Python当打之年(点击跳转)】

本期利用 python 分析一下**「去哪网海南旅游攻略数据」** ,看看海南哪些旅游景点最受大家喜爱,哪个时间段旅游的朋友比较多,最受大家欢迎的旅行方式有哪些,以及旅行目的 等,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

  • Pandas --- 数据处理
  • Pyecharts --- 数据可视化

🏳️‍🌈 1. 导入模块

python 复制代码
import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Scatter
from pyecharts.charts import WordCloud
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')

🏳️‍🌈 2. Pandas数据处理

2.1 读取数据

python 复制代码
df = pd.read_excel("./去哪网海南攻略数据.xlsx")

2.2 查看数据信息

python 复制代码
df.info()

2.3 日期处理,提取年份、月份

python 复制代码
df['出发日期_年'] = [int(i.split('-')[0]) for i in df['出发日期'].tolist()]
df['出发日期_月'] = [int(i.split('-')[1]) for i in df['出发日期'].tolist()]

2.4 经费处理

python 复制代码
fee = [int(i.replace('人均','').replace('元','')) for i in df_fee['人均消费'].tolist()]
df_fee['人均消费'] = fee

2.5 天数处理

python 复制代码
df['天数'] = df['天数'].str[1:-1]
df['天数'] = df['天数'].astype('int')

🏳️‍🌈 3. Pyecharts数据可视化

3.1 出发日期_年份分布

python 复制代码
def get_chart1():
    chart = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis("", y_data)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="1-出发日期_年",
                pos_top='2%',
                pos_left="center",
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),
            yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),
            visualmap_opts=opts.VisualMapOpts(is_show=False,),
        )
    )
    return chart
  • 2014、2015、2016年的攻略数量相较于其他年份明显较多、2017-2021年趋于平稳。

  • 近三年时间大概由于时间比较近,加之疫情原因,所以攻略数量较少。

3.2 出发日期_月份分布

python 复制代码
def get_chart2():
    chart = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis("", y_data)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="2-每月攻略数量",
                pos_top='2%',
                pos_left="center",
            ),
            visualmap_opts=opts.VisualMapOpts(is_show=False),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )
    return chart
  • 1月、12月的攻略数比较高,大概占到了总数量的20%,反而6月、7月、8月的数量相对低一些。

3.3 出行天数分布

  • 从出行天数上来看,大多集中在一周(5天)左右,也有少量半个月、一个月的旅游时间。

3.4 旅游途经点分布

  • 首当其冲当然是三亚(1853)啦!远超排在第二的海口(182),基本是10倍之多,紧随其后的是陵水(108)、万宁(60)、文昌(46)等地。

3.5 出行团体占比

python 复制代码
def get_chart3():
    chart = (
        Pie()
        .add("", [list(z) for z in zip(x_data, y_data)])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="5-出行团体占比",
                pos_top='2%',
                pos_left="center"
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(is_show=False,),
        )
        .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
    )
    return chart
  • 出行团体方面大多以好友(22%)、情侣(21%)和家庭(20%)团体居多。

3.6 人均消费区间占比

  • 人均消费3000-5000元居多,占比46%,1000-3000元占比28%。

3.7 出行类型标签统计

3.8 旅游行程景点词云

python 复制代码
def get_chart4():
    chart = (
        WordCloud()
        .add("",words,word_size_range=[10,50])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                    title='8-旅游行程景点词云',
                    pos_top='2%',
                    pos_left="center",
                ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(is_show=False),
        )
    )
    return chart
  • 亚龙湾、三亚湾、蜈支洲岛、大东海、天涯海角、海棠湾等景点更受驴友的喜爱。

🏳️‍🌈 4. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏 也可以分享注明出处)让更多人知道。

相关推荐
TG_yunshuguoji9 小时前
亚马逊云代理:亚马逊云怎么样进行大规模数据分析与处理?
数据挖掘·数据分析·云计算·aws
Y学院9 小时前
Python 数据分析:从新手到高手的“摸鱼”指南
python·数据分析
IT学长编程9 小时前
计算机毕业设计 基于大数据技术的医疗数据分析与研究 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·机器学习·数据分析·毕业设计·毕业论文·医疗数据分析
IT学长编程12 小时前
计算机毕业设计 基于深度学习的酒店评论文本情感分析研究 Python毕业设计项目 Hadoop毕业设计选题 机器学习选题【附源码+文档报告+安装调试】
hadoop·python·深度学习·机器学习·数据分析·毕业设计·酒店评论文本情感分析
HaiLang_IT14 小时前
数据分析毕业论文题目推荐:精选选题清单
大数据·数据分析·毕业设计
人大博士的交易之路18 小时前
今日行情明日机会——20250912
大数据·数据挖掘·数据分析·缠论·缠中说禅·涨停回马枪·道琼斯结构
万粉变现经纪人1 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘sympy’问题
python·beautifulsoup·pandas·scikit-learn·pyqt·pip·scipy
麦麦大数据1 天前
J002 Vue+SpringBoot电影推荐可视化系统|双协同过滤推荐算法评论情感分析spark数据分析|配套文档1.34万字
vue.js·spring boot·数据分析·spark·可视化·推荐算法
CC数分1 天前
零基础3个月上岸[特殊字符]自学数据分析路线
学习·数据挖掘·数据分析·大学生·考证
折翼的恶魔1 天前
数据分析:合并
python·数据分析·pandas