【45 Pandas+Pyecharts | 去哪儿海南旅游攻略数据分析可视化】

文章目录

  • [🏳️‍🌈 1. 导入模块](#🏳️‍🌈 1. 导入模块)
  • [🏳️‍🌈 2. Pandas数据处理](#🏳️‍🌈 2. Pandas数据处理)
    • [2.1 读取数据](#2.1 读取数据)
    • [2.2 查看数据信息](#2.2 查看数据信息)
    • [2.3 日期处理,提取年份、月份](#2.3 日期处理,提取年份、月份)
    • [2.4 经费处理](#2.4 经费处理)
    • [2.5 天数处理](#2.5 天数处理)
  • [🏳️‍🌈 3. Pyecharts数据可视化](#🏳️‍🌈 3. Pyecharts数据可视化)
    • [3.1 出发日期_年份分布](#3.1 出发日期_年份分布)
    • [3.2 出发日期_月份分布](#3.2 出发日期_月份分布)
    • [3.3 出行天数分布](#3.3 出行天数分布)
    • [3.4 旅游途经点分布](#3.4 旅游途经点分布)
    • [3.5 出行团体占比](#3.5 出行团体占比)
    • [3.6 人均消费区间占比](#3.6 人均消费区间占比)
    • [3.7 出行类型标签统计](#3.7 出行类型标签统计)
    • [3.8 旅游行程景点词云](#3.8 旅游行程景点词云)
  • [🏳️‍🌈 4. 可视化项目源码+数据](#🏳️‍🌈 4. 可视化项目源码+数据)

大家好,我是 👉【Python当打之年(点击跳转)】

本期利用 python 分析一下**「去哪网海南旅游攻略数据」** ,看看海南哪些旅游景点最受大家喜爱,哪个时间段旅游的朋友比较多,最受大家欢迎的旅行方式有哪些,以及旅行目的 等,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

  • Pandas --- 数据处理
  • Pyecharts --- 数据可视化

🏳️‍🌈 1. 导入模块

python 复制代码
import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Scatter
from pyecharts.charts import WordCloud
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')

🏳️‍🌈 2. Pandas数据处理

2.1 读取数据

python 复制代码
df = pd.read_excel("./去哪网海南攻略数据.xlsx")

2.2 查看数据信息

python 复制代码
df.info()

2.3 日期处理,提取年份、月份

python 复制代码
df['出发日期_年'] = [int(i.split('-')[0]) for i in df['出发日期'].tolist()]
df['出发日期_月'] = [int(i.split('-')[1]) for i in df['出发日期'].tolist()]

2.4 经费处理

python 复制代码
fee = [int(i.replace('人均','').replace('元','')) for i in df_fee['人均消费'].tolist()]
df_fee['人均消费'] = fee

2.5 天数处理

python 复制代码
df['天数'] = df['天数'].str[1:-1]
df['天数'] = df['天数'].astype('int')

🏳️‍🌈 3. Pyecharts数据可视化

3.1 出发日期_年份分布

python 复制代码
def get_chart1():
    chart = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis("", y_data)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="1-出发日期_年",
                pos_top='2%',
                pos_left="center",
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),
            yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),
            visualmap_opts=opts.VisualMapOpts(is_show=False,),
        )
    )
    return chart
  • 2014、2015、2016年的攻略数量相较于其他年份明显较多、2017-2021年趋于平稳。

  • 近三年时间大概由于时间比较近,加之疫情原因,所以攻略数量较少。

3.2 出发日期_月份分布

python 复制代码
def get_chart2():
    chart = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis("", y_data)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="2-每月攻略数量",
                pos_top='2%',
                pos_left="center",
            ),
            visualmap_opts=opts.VisualMapOpts(is_show=False),
            legend_opts=opts.LegendOpts(is_show=False),
        )
    )
    return chart
  • 1月、12月的攻略数比较高,大概占到了总数量的20%,反而6月、7月、8月的数量相对低一些。

3.3 出行天数分布

  • 从出行天数上来看,大多集中在一周(5天)左右,也有少量半个月、一个月的旅游时间。

3.4 旅游途经点分布

  • 首当其冲当然是三亚(1853)啦!远超排在第二的海口(182),基本是10倍之多,紧随其后的是陵水(108)、万宁(60)、文昌(46)等地。

3.5 出行团体占比

python 复制代码
def get_chart3():
    chart = (
        Pie()
        .add("", [list(z) for z in zip(x_data, y_data)])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title="5-出行团体占比",
                pos_top='2%',
                pos_left="center"
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(is_show=False,),
        )
        .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"))
    )
    return chart
  • 出行团体方面大多以好友(22%)、情侣(21%)和家庭(20%)团体居多。

3.6 人均消费区间占比

  • 人均消费3000-5000元居多,占比46%,1000-3000元占比28%。

3.7 出行类型标签统计

3.8 旅游行程景点词云

python 复制代码
def get_chart4():
    chart = (
        WordCloud()
        .add("",words,word_size_range=[10,50])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                    title='8-旅游行程景点词云',
                    pos_top='2%',
                    pos_left="center",
                ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(is_show=False),
        )
    )
    return chart
  • 亚龙湾、三亚湾、蜈支洲岛、大东海、天涯海角、海棠湾等景点更受驴友的喜爱。

🏳️‍🌈 4. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏 也可以分享注明出处)让更多人知道。

相关推荐
Python大数据分析@2 小时前
Vaex :突破pandas,快速分析100G大数据量
pandas
数据智研6 小时前
【数据分享】太湖及周边地区1985-2010年耕地空间分布TIF数据
信息可视化·数据分析
AI小云6 小时前
【数据操作与可视化】Pandas数据处理-Series数据结构
开发语言·数据结构·python·numpy·pandas
源码之家7 小时前
基于python新闻数据分析可视化系统 Hadoop 新闻平台 爬虫 情感分析 舆情分析 可视化 Django框架 vue框架 机器学习 大数据毕业设计✅
大数据·爬虫·python·数据分析·毕业设计·情感分析·新闻
以梦为马mmky9 小时前
25中国矿业大学通信考情数据分析
数据分析·通信考研·信号与系统·中国矿业大学
EAIReport10 小时前
企业人力资源管理数据分析:离职因素与群体特征研究
人工智能·数据挖掘·数据分析
咚咚王者11 小时前
人工智能之数据分析 numpy:第八章 数组广播
人工智能·数据分析·numpy
源码之家21 小时前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask
谅望者1 天前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
咚咚王者1 天前
人工智能之数据分析 numpy:第七章 数组迭代排序筛选
人工智能·数据分析·numpy