OpenCV和PIL进行前景提取

摘要

在图像处理和分析中,前景提取是一项关键技术,尤其是在计算机视觉和模式识别领域。本文介绍了一种结合OpenCV和PIL库的方法,实现在批量处理图像时有效提取前景并保留原始图像的EXIF数据。具体步骤包括从指定文件夹中读取图像,进行前景提取和处理,然后将结果保存到另一个文件夹,同时保持图像的元数据信息。

代码实现步骤

这段代码实现了从指定文件夹中批量读取图像,进行前景提取和处理,并将结果保存到另一个文件夹,同时保留原始图像的EXIF信息。以下是代码的详细解释:

导入必要的库

python 复制代码
import cv2
import numpy as np
from PIL import Image
import glob
import os
from pathlib import Path
import tqdm
  • cv2: OpenCV库,用于图像处理。
  • numpy: 数值计算库,用于处理数组操作。
  • PIL: Python图像库,用于处理图像文件和EXIF数据。
  • glob: 文件名模式匹配库,用于查找符合特定模式的文件路径名。
  • os: 操作系统接口,用于文件和目录操作。
  • Path: pathlib库的一部分,用于处理文件路径。
  • tqdm: 进度条库,用于显示处理进度。

设置文件夹路径和创建输出文件夹

python 复制代码
folder_path = r'C:\Users\cdh96\Desktop\iphone11\*.jpg'
output_folder = r'D:\lab\paper\img_preproccess\extrat_foreground\1\images'

if not os.path.isdir(output_folder):
    os.mkdir(output_folder)
  • folder_path: 输入图像文件夹路径。
  • output_folder: 输出图像文件夹路径。如果输出文件夹不存在,则创建它。

处理图像

python 复制代码
for image_path in tqdm.tqdm(glob.glob(folder_path)):
    path_obj  = Path(image_path)
    image_path = path_obj.as_posix()

    img_original = cv2.imread(image_path)
    
    if img_original is None:
        break
    
    img_original = cv2.cvtColor(img_original, cv2.COLOR_RGB2BGR)
    img_gray = cv2.imread(image_path, 0)
  • 使用glob库获取所有符合条件的图像路径,并使用tqdm显示进度条。
  • 使用cv2.imread读取图像,如果图像为空,退出循环。
  • 将图像转换为BGR格式,并读取灰度图像。

前景提取和处理

python 复制代码
    output_path = os.path.join(output_folder, path_obj.name)

    retval, img_global = cv2.threshold(img_gray, 30, 255, cv2.THRESH_BINARY)
    img_global[img_global > 0] = 1

    kernel = np.ones((3, 3), dtype=np.uint8)
    img_global = cv2.morphologyEx(img_global, cv2.MORPH_OPEN, kernel, iterations=4)
    
    num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img_global, connectivity=8)
    
    sorted_indices = np.argsort(stats[:, -1])

    labels[labels != sorted_indices[-2]] = 0
    labels[labels == sorted_indices[-2]] = 1

    img_original = img_original * np.repeat(labels[:, :, np.newaxis], 3, axis=-1)
    img_original = cv2.convertScaleAbs(img_original)

    image_rgb = cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)
  • 使用全局阈值法提取前景。
  • 使用形态学操作去除噪点。
  • 使用连通组件分析提取主要前景区域。
  • 根据连通组件的面积排序,选取面积第二大的组件作为主要前景。
  • 生成前景掩码并应用到原始图像。

保存处理后的图像并保留EXIF数据

python 复制代码
    cv2.imwrite(output_path, image_rgb)

    with Image.open(r'D:\lab\paper\img_preproccess\extrat_foreground\1\DSC00421.JPG') as img:
        exif_data = img.info.get('exif')

    with Image.open(output_path) as img:
        img.save(output_path, 'JPEG', exif=exif_data)
  • 保存处理后的图像。
  • 从示例图像中提取EXIF数据,并应用到处理后的图像中。

这个过程确保了前景的提取和处理,同时保留了原始图像的EXIF元数据,使得图像在保存时保留原始的拍摄信息。

整体代码

python 复制代码
import cv2
import numpy as np
from PIL import Image
import glob
import os
from pathlib import Path
import tqdm

folder_path = r'C:\Users\cdh96\Desktop\iphone11\*.jpg'
output_folder = r'D:\lab\paper\img_preproccess\extrat_foreground\1\images'

if not os.path.isdir(output_folder):
    os.mkdir(output_folder)

for image_path in tqdm.tqdm(glob.glob(folder_path)):
    path_obj  = Path(image_path)
    image_path = path_obj.as_posix()

    img_original = cv2.imread(image_path)
    
    if img_original is None:
        break
    
    img_original = cv2.cvtColor(img_original, cv2.COLOR_RGB2BGR)
    img_gray = cv2.imread(image_path, 0)


    output_path = os.path.join(output_folder,path_obj.name)

    # 分割
    retval, img_global = cv2.threshold(img_gray, 30, 255, cv2.THRESH_BINARY)
    img_global[img_global > 0] = 1

    # 处理毛刺
    kernel = np.ones((3, 3), dtype=np.uint8)
    img_global = cv2.morphologyEx(img_global, cv2.MORPH_OPEN, kernel, iterations=4)
    
    # 根据面积选取主体
    num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(
        img_global, connectivity=8)

    
    sorted_indices = np.argsort(stats[:, -1])

    # 使用mask
    labels[labels != sorted_indices[-2]] = 0
    labels[labels == sorted_indices[-2]] = 1

    img_original = img_original * np.repeat(labels[:, :, np.newaxis], 3, axis=-1)
    img_original = cv2.convertScaleAbs(img_original)

    image_rgb = cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)

    cv2.imwrite(output_path, image_rgb)

    # # 存储原始的图像信息
    with Image.open(r'D:\lab\paper\img_preproccess\extrat_foreground\1\DSC00421.JPG') as img:
        exif_data = img.info.get('exif')

    with Image.open(output_path) as img:
        img.save(output_path, 'JPEG', exif=exif_data)
        
相关推荐
程序猿小D1 分钟前
【完整源码+数据集+部署教程】【零售和消费品&存货】价格标签检测系统源码&数据集全套:改进yolo11-RFAConv
前端·yolo·计算机视觉·目标跟踪·数据集·yolo11·价格标签检测系统源码
滑水滑成滑头4 分钟前
**点云处理:发散创新,探索前沿技术**随着科技的飞速发展,点云处理技术在计算机视觉、自动驾驶、虚拟现实等领域的应用愈发广
java·python·科技·计算机视觉·自动驾驶
gc_229931 分钟前
学习Python中Selenium模块的基本用法(19:操作下拉框)
python·selenium
我的xiaodoujiao41 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 19--测试框架Pytest基础 3--前后置操作应用
python·学习·测试工具·pytest
计算衎1 小时前
基于Python实现CANoe和UDE交互通信工具实现,CAPL脚本通过python交互工具与UDE进行通信和调用UDE的组件获取UDE返回值。
python·capl·canoe·ude·nm_oncan
报错小能手1 小时前
python(入门)map内置函数及import模块导入,as别名
开发语言·人工智能·python
CoovallyAIHub1 小时前
超越“识别”:下一代机器视觉如何破解具身智能落地难题?
深度学习·算法·计算机视觉
Allen_LVyingbo2 小时前
Python使用Medical Information Dataset实战2025.07版(下)
python·信息可视化·健康医疗