RuntimeError: CUDA error: invalid device ordinal

RuntimeError: CUDA error: invalid device ordinal

报错分析:

如果你在运行代码时报错:

py 复制代码
RuntimeError: CUDA error: invalid device ordinal

这个错误通常表示您指定的 GPU 设备编号不存在或不可用。

可能原因1:设置CUDA_VISIBLE_DEVICES的问题

我回顾一下我是怎么遇到的这个问题:

  1. 我在sh文件里写了一句:CUDA_VISIBLE_DEVICES="1"
  2. 我在sh调用的py文件里又写了一句os.environ["CUDA_VISIBLE_DEVICES"] = "1"
  3. 之后运行程序报错。

报错原因:

  1. 我在sh文件里设置CUDA_VISIBLE_DEVICES="1"来运行程序,这意味着py程序只能看见一张GPU卡,也就是1号卡 。

  2. 这一张1号卡,通过物理设备编号到虚拟设备编号的映射,因为GPU卡号索引从0开始,py程序认为整个设备只有一张0号GPU卡。

  3. 这时我再在py文件里加一句os.environ["CUDA_VISIBLE_DEVICES"] = "1",让其在只认为程序有一张0号卡的时候运行1号卡,它就会报错,认为GPU设备编号不存在。

解决办法:

把py文件里的os.environ["CUDA_VISIBLE_DEVICES"] = "1"删掉即可,只在sh文件里输入指定的卡号即可。

可能原因2:硬件或驱动原因

系统可能确实没有那么多卡,或驱动没装好

解决方法:

  1. 检查GPU数量和设备编号:
    • 使用nvidia-smi命令来查看系统中可用的GPU数量和它们的编号。确保你的代码中使用的设备编号与nvidia-smi显示的编号相匹配。
  2. 访问NVIDIA官网,下载并安装与你的GPU型号和系统相匹配的最新驱动。 确保安装了正确版本的CUDA工具包,并且与你的GPU驱动兼容。
  3. 检查代码中的设备选择逻辑:仔细审查你的代码,特别是与CUDA设备选择和初始化相关的部分。确保在尝试使用CUDA设备之前,已经正确地选择了存在的设备。可以使用如下两条命令来检查设备选择逻辑。
    • print(torch.cuda.device_count())
    • print(torch.cuda.current_device())

参考资料

  1. 我自己的实验
  2. 已解决RuntimeError: CUDA error: invalid device ordinal 亲测有效!!!
相关推荐
忘却的旋律dw22 分钟前
使用LLM模型的tokenizer报错AttributeError: ‘dict‘ object has no attribute ‘model_type‘
人工智能·pytorch·python
学术小白人27 分钟前
会议第一轮投稿!2026年物联网、数据科学与先进计算国际学术会议(IDSAC2026)
人工智能·物联网·数据分析·能源·制造·教育·rdlink研发家
20岁30年经验的码农31 分钟前
Java RabbitMQ 实战指南
java·开发语言·python
极客BIM工作室33 分钟前
用LLM+CadQuery自动生成CAD模型:CAD-Coder让文本秒变3D零件
人工智能·机器学习
苍何35 分钟前
TRAE SOLO中国版终于来了,完全免费!
人工智能
苍何36 分钟前
爆肝2天万字总结,飞书多维表格保姆级教程来了【建议收藏】
人工智能
非著名架构师37 分钟前
极端天气下的供应链韧性:制造企业如何构建气象风险防御体系
大数据·人工智能·算法·制造·疾风气象大模型·风光功率预测
柳暗花再明38 分钟前
Visio 中设置文本框背景透明的方法
人工智能·windows
lisw0543 分钟前
原子级制造的现状与未来!
人工智能·机器学习·制造
东南门吹雪1 小时前
AI芯片-LLM算子-CPU-Cache
人工智能·cache·昇腾·npu·一致性协议