基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

[4.1 初始化阶段(Big Bang)](#4.1 初始化阶段(Big Bang))

[4.2 扩张阶段](#4.2 扩张阶段)

[4.3 收缩阶段(Big Crunch)](#4.3 收缩阶段(Big Crunch))

[4.4 更新和迭代](#4.4 更新和迭代)

5.完整程序


1.程序功能描述

基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

(完整程序运行后无水印)

3.核心程序

复制代码
....................................................
% 主循环开始
for it=1:Iters          % 迭代过程
 it
    num=zeros(1,Nums);     % 初始化粒子群的"质量"向量
    for ii=1:Npop             % 计算每个维度的"质量"总和
        for jj=1:Nums
            num(jj)=num(jj)+(xs(ii,jj)/ys(ii));
        end
    end
    
    % 计算"质心"
    den=sum(1./ys);          % 分母项,用于归一化
    Xc=num/den;             % 计算搜索空间的"质心"位置
    
    % 更新粒子位置
    for ii=1:Npop
        for jj=1:Nums      
            New=xs(ii,:);     % 复制当前粒子位置
            New(jj)=Xc(jj)+0.1*((Vmax(jj)*rand)/it^2);  % 更新位置,引入随机扰动
        end
        New=func_limit(New,Vmax,Vmin);  % 限制新位置在边界内
        newFit=func_fitness(New);            % 计算新位置的适应度
        
        % 适应度比较与更新
        if newFit<ys(ii)
            xs(ii,:)=New;                  % 更新粒子位置
            ys(ii)=newFit;                 % 更新粒子适应度
            if ys(ii)<Ybest               % 更新全局最优解
                Xbest=xs(ii,:);
                Ybest=ys(ii);   
            end
        end
    end
    Ygbest=[Ygbest Ybest];                  % 记录每轮迭代的全局最优适应度
end


fprintf('最佳解为:\n');
disp(Xbest);
fprintf('对应的最小适应度值为: %f\n',Ybest);

% 收敛曲线绘制
figure
semilogy(1:2:Iters,Ygbest(1:2:Iters),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);         % 绘制迭代过程中的全局最优适应度对数图
xlabel('迭代次数')
ylabel('目标函数值')
grid on                         % 显示网格
66

4.本算法原理

Big Bang-Big Crunch(BBBC)算法是一种启发式全局优化算法,灵感来源于宇宙大爆炸和大收缩理论。该算法旨在搜索问题空间以寻找目标函数的全局最小值。BBBC算法的核心思想模拟了宇宙从大爆炸(Big Bang)开始,经历扩张,再到可能的大收缩(Big Crunch)的过程,以此类比于在解空间中从初始分散的解集出发,通过一系列搜索过程逐步集中并接近最优解的过程。

4.1 初始化阶段(Big Bang)

解空间初始化:算法开始时,随机生成一个解集X={x1,x2,...,xN},其中每个解xi对应于解空间中的一个点,N是解的数量。

目标函数评估:对每个解xi计算目标函数值f(xi),目标通常是寻找最小化的目标函数值。

4.2 扩张阶段

解的移动:每个解xi依据一定的规则在解空间中移动,这个移动可以是随机的,也可以基于某种策略,比如基于目标函数梯度的方向或者利用当前解与其他解的相对位置。

移动公式:一种简单的移动方式可以表示为xi′=xi+α⋅random(),其中α是学习率,random()random()是一个随机函数,用来引入随机性。

4.3 收缩阶段(Big Crunch)

解的聚集:在扩张达到一定迭代次数或满足特定条件后,解开始"收缩"向当前最优解或某中心点。这一步骤通过缩小解之间的距离来实现,使得解集逐渐集中。

聚集公式:一个简化的聚集方法可以是xi′′=xbest+β⋅(xi′−xbest),其中xbest是最优解,β是一个小于1的收缩因子,控制收缩速度。

4.4 更新和迭代

最优解更新:在每次移动或聚集后,重新评估所有解的目标函数值,并更新全局最优解xbest。

重复步骤:重复执行扩张和收缩过程,直到满足停止准则(如达到最大迭代次数、解的改进小于某一阈值等)。

5.完整程序

VVV

相关推荐
科研工作站13 小时前
【创新算法】改进深度优先搜索算法配合二进制粒子群的配电网故障恢复重构研究
matlab·配电网·故障恢复·改进粒子群·深度优先搜索·33节点
zzc92114 小时前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
软件算法开发14 小时前
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
matlab·wsn·距离变化·能量开销·动态调整·低功耗拓扑控制开销算法
机器学习之心20 小时前
机器学习用于算法交易(Matlab实现)
算法·机器学习·matlab
曹勖之2 天前
UE 5 和simulink联合仿真,如果先在UE5这一端结束Play,过一段时间以后**Unreal Engine 5** 中会出现显存不足错误
matlab·ue5·机器人
曹勖之2 天前
simulink有无现成模块可以实现将三个分开的输入合并为一个[1*3]的行向量输出?
matlab
机器学习之心3 天前
Transformer-BiGRU多变量时序预测(Matlab完整源码和数据)
深度学习·matlab·transformer·bigru
slandarer3 天前
MATLAB | 绘图复刻(十九)| 轻松拿捏 Nature Communications 绘图
开发语言·matlab
【杨(_> <_)】3 天前
信号处理分析工具——时频分析(一)
算法·matlab·信号处理
曹勖之4 天前
在MATLAB中使用自定义的ROS2消息
开发语言·matlab·机器人·ros·simulink·ros2