基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

[4.1 初始化阶段(Big Bang)](#4.1 初始化阶段(Big Bang))

[4.2 扩张阶段](#4.2 扩张阶段)

[4.3 收缩阶段(Big Crunch)](#4.3 收缩阶段(Big Crunch))

[4.4 更新和迭代](#4.4 更新和迭代)

5.完整程序


1.程序功能描述

基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

(完整程序运行后无水印)

3.核心程序

复制代码
....................................................
% 主循环开始
for it=1:Iters          % 迭代过程
 it
    num=zeros(1,Nums);     % 初始化粒子群的"质量"向量
    for ii=1:Npop             % 计算每个维度的"质量"总和
        for jj=1:Nums
            num(jj)=num(jj)+(xs(ii,jj)/ys(ii));
        end
    end
    
    % 计算"质心"
    den=sum(1./ys);          % 分母项,用于归一化
    Xc=num/den;             % 计算搜索空间的"质心"位置
    
    % 更新粒子位置
    for ii=1:Npop
        for jj=1:Nums      
            New=xs(ii,:);     % 复制当前粒子位置
            New(jj)=Xc(jj)+0.1*((Vmax(jj)*rand)/it^2);  % 更新位置,引入随机扰动
        end
        New=func_limit(New,Vmax,Vmin);  % 限制新位置在边界内
        newFit=func_fitness(New);            % 计算新位置的适应度
        
        % 适应度比较与更新
        if newFit<ys(ii)
            xs(ii,:)=New;                  % 更新粒子位置
            ys(ii)=newFit;                 % 更新粒子适应度
            if ys(ii)<Ybest               % 更新全局最优解
                Xbest=xs(ii,:);
                Ybest=ys(ii);   
            end
        end
    end
    Ygbest=[Ygbest Ybest];                  % 记录每轮迭代的全局最优适应度
end


fprintf('最佳解为:\n');
disp(Xbest);
fprintf('对应的最小适应度值为: %f\n',Ybest);

% 收敛曲线绘制
figure
semilogy(1:2:Iters,Ygbest(1:2:Iters),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);         % 绘制迭代过程中的全局最优适应度对数图
xlabel('迭代次数')
ylabel('目标函数值')
grid on                         % 显示网格
66

4.本算法原理

Big Bang-Big Crunch(BBBC)算法是一种启发式全局优化算法,灵感来源于宇宙大爆炸和大收缩理论。该算法旨在搜索问题空间以寻找目标函数的全局最小值。BBBC算法的核心思想模拟了宇宙从大爆炸(Big Bang)开始,经历扩张,再到可能的大收缩(Big Crunch)的过程,以此类比于在解空间中从初始分散的解集出发,通过一系列搜索过程逐步集中并接近最优解的过程。

4.1 初始化阶段(Big Bang)

解空间初始化:算法开始时,随机生成一个解集X={x1,x2,...,xN},其中每个解xi对应于解空间中的一个点,N是解的数量。

目标函数评估:对每个解xi计算目标函数值f(xi),目标通常是寻找最小化的目标函数值。

4.2 扩张阶段

解的移动:每个解xi依据一定的规则在解空间中移动,这个移动可以是随机的,也可以基于某种策略,比如基于目标函数梯度的方向或者利用当前解与其他解的相对位置。

移动公式:一种简单的移动方式可以表示为xi′=xi+α⋅random(),其中α是学习率,random()random()是一个随机函数,用来引入随机性。

4.3 收缩阶段(Big Crunch)

解的聚集:在扩张达到一定迭代次数或满足特定条件后,解开始"收缩"向当前最优解或某中心点。这一步骤通过缩小解之间的距离来实现,使得解集逐渐集中。

聚集公式:一个简化的聚集方法可以是xi′′=xbest+β⋅(xi′−xbest),其中xbest是最优解,β是一个小于1的收缩因子,控制收缩速度。

4.4 更新和迭代

最优解更新:在每次移动或聚集后,重新评估所有解的目标函数值,并更新全局最优解xbest。

重复步骤:重复执行扩张和收缩过程,直到满足停止准则(如达到最大迭代次数、解的改进小于某一阈值等)。

5.完整程序

VVV

相关推荐
bu_shuo4 小时前
simulink中使用fft进行频谱分析卡死可能的解决方法
matlab·simulink·fft·powergui
技术净胜8 小时前
MATLAB 环境搭建与认知实战教程:从下载安装到入门全解析教程
开发语言·matlab
bu_shuo8 小时前
Simulink保存为低版本模型文件
matlab·simulink
技术净胜9 小时前
MATLAB基本运算与运算符全解析
开发语言·matlab
aini_lovee9 小时前
使用BP神经网络进行故障数据分类的方法和MATLAB实现
神经网络·matlab·分类
listhi5209 小时前
matlab大规模L1范数优化问题
开发语言·matlab
jghhh0110 小时前
基于 MATLAB 的光照不均匀图像增强
opencv·计算机视觉·matlab
杰瑞不懂代码10 小时前
基于 MATLAB 的 BPSK 在 AWGN 信道下误码率仿真与性能分析
开发语言·网络·matlab
aini_lovee21 小时前
寻找 MAC 协议的 MATLAB 仿真
开发语言·macos·matlab
t198751281 天前
基于MATLAB的线性判别分析(LDA)降维算法实现方案
开发语言·算法·matlab