简单实现一个本地ChatGPT web服务(langchain框架)

简单实现一个本地ChatGPT 服务,用到langchain框架,fastapi,并且本地安装了ollama。

依赖安装:

python 复制代码
pip install langchain
pip install langchain_community
pip install langchain-cli # langchain v0.2 2024年5月最新版本
pip install bs4
pip install langchainhub
pip install FastAPI

实现本地chatGPT代码:

python 复制代码
from fastapi import FastAPI
from langchain_community.llms.ollama import Ollama
from langchain_core.prompts import ChatPromptTemplate
from langserve import add_routes
from langchain_core.output_parsers import StrOutputParser
from langchain_core.messages import HumanMessage, SystemMessage

# 创建LLM模型
model = Ollama(model="qwen2:7b")

messages = [
    SystemMessage(content="你好!我是你的虚拟助理。今天我能为您做些什么?"),
    HumanMessage(content="你好!"),
]

result = model.invoke(messages)

print('-----------------------相当于启动测试模型回复-----------------------')
print(result)
print('-----------------------相当于启动测试模型回复-----------------------')

parser = StrOutputParser()

prompt_template = ChatPromptTemplate.from_messages([
    ('system', "你好!我是你的虚拟助理。"),
    ('user', '{text}')
])

chain = prompt_template | model | parser

# 定义web服务
app = FastAPI(
    title="LangChain Server",
    version="1.0",
    description="一个简单的 web API 服务",
)

add_routes(
    app,
    chain,
    path="/chain",
)

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)

服务运行启动web服务结果:

客户端调用web服务测试代码:

python 复制代码
from langserve import RemoteRunnable

remote_chain = RemoteRunnable("http://localhost:8000/chain/")
r = remote_chain.invoke({ "text": "帮我用java写1个排序算法"})
print(r)

测试结果回答准确,如下图:

服务端非常简单,后面再写个前端对接一下即可方便使用。

相关推荐
程序员佳佳2 小时前
GPT-4时代终结?GPT-5.2与Banana Pro实测数据公开,普通开发者如何接住这泼天富贵
开发语言·python·gpt·chatgpt·重构·api·midjourney
SCBAiotAigc6 小时前
langchain1.2学习笔记(一):安装langchain
人工智能·python·langchain
中國龍在廣州6 小时前
生成不遗忘,「超长时序」世界模型,北大EgoLCD长短时记忆加持
人工智能·深度学习·算法·自然语言处理·chatgpt
我想问问天7 小时前
【从0到1大模型应用开发实战】02|用 LangChain 和本地大模型,完成第一次“可控对话
后端·langchain·aigc
韭菜炒大葱9 小时前
LangChain 二:输出结果定制与历史管理能力详解
前端·langchain·openai
低调小一10 小时前
LangChain 入门:把大模型“组装”成应用的那套乐高(5分钟用通义千问 + LCEL 跑通 Demo)
langchain
龙腾亚太11 小时前
如何有效整合文本、图像等不同模态信息,提升模型跨模态理解与生成能力
langchain·多模态·dify·具身智能·智能体·vla
victory043111 小时前
后训练的起点 学术路线
chatgpt
中國龍在廣州11 小时前
2025,具身智能正在惩罚“持有者”
人工智能·深度学习·算法·自然语言处理·chatgpt
Coder_Boy_12 小时前
基于SpringAI的智能平台基座开发-(五)
java·人工智能·spring boot·langchain·springai