简单实现一个本地ChatGPT web服务(langchain框架)

简单实现一个本地ChatGPT 服务,用到langchain框架,fastapi,并且本地安装了ollama。

依赖安装:

python 复制代码
pip install langchain
pip install langchain_community
pip install langchain-cli # langchain v0.2 2024年5月最新版本
pip install bs4
pip install langchainhub
pip install FastAPI

实现本地chatGPT代码:

python 复制代码
from fastapi import FastAPI
from langchain_community.llms.ollama import Ollama
from langchain_core.prompts import ChatPromptTemplate
from langserve import add_routes
from langchain_core.output_parsers import StrOutputParser
from langchain_core.messages import HumanMessage, SystemMessage

# 创建LLM模型
model = Ollama(model="qwen2:7b")

messages = [
    SystemMessage(content="你好!我是你的虚拟助理。今天我能为您做些什么?"),
    HumanMessage(content="你好!"),
]

result = model.invoke(messages)

print('-----------------------相当于启动测试模型回复-----------------------')
print(result)
print('-----------------------相当于启动测试模型回复-----------------------')

parser = StrOutputParser()

prompt_template = ChatPromptTemplate.from_messages([
    ('system', "你好!我是你的虚拟助理。"),
    ('user', '{text}')
])

chain = prompt_template | model | parser

# 定义web服务
app = FastAPI(
    title="LangChain Server",
    version="1.0",
    description="一个简单的 web API 服务",
)

add_routes(
    app,
    chain,
    path="/chain",
)

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)

服务运行启动web服务结果:

客户端调用web服务测试代码:

python 复制代码
from langserve import RemoteRunnable

remote_chain = RemoteRunnable("http://localhost:8000/chain/")
r = remote_chain.invoke({ "text": "帮我用java写1个排序算法"})
print(r)

测试结果回答准确,如下图:

服务端非常简单,后面再写个前端对接一下即可方便使用。

相关推荐
ai大师3 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
爱喝喜茶爱吃烤冷面的小黑黑7 小时前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式
大千AI13 小时前
LangChain Core架构解析:模块化设计与LCEL原语实现原理
langchain
Chatopera 研发团队13 小时前
智能体开发,实现自定义知识库,基于 LangChain,qwen 7b, ollama, chatopera | LLMs
langchain
硅谷神农14 小时前
第一章:AI与LangChain初探 —— 你的第一个“智能”程序
langchain
硅谷神农14 小时前
第二章:模型 (Models) —— AI应用的大脑
langchain
你那个道上的1 天前
LangChain4j学习与实践
langchain·ai编程
缘友一世1 天前
LangChain【8】之工具包深度解析:从基础使用到高级实践
langchain
bytebeats1 天前
强大的代理通信其实是 A2A + MCP + LangChain
langchain·mcp
二十一_2 天前
🤖✨ ChatGPT API深度体验:让AI看懂图片、听懂语音、调用你的代码
前端·chatgpt·openai