基于泰坦尼克号生还数据进行 Spark 分析

基于泰坦尼克号生还数据进行 Spark 分析

在这篇博客中,我们将展示如何使用 Apache Spark 分析著名的泰坦尼克号数据集。通过这篇教程,您将学习如何处理数据、分析乘客的生还情况,并生成有价值的统计信息。

数据解析

• PassengerId : 乘客编号。

• Survived : 是否存活,0表示未能存活,1表示存活。

• Pclass : 描述乘客所属的等级,总共分为三等,用1、2、3来描述:1表示高等;2表示中等;3表示低等。

• Name : 乘客姓名。

• Sex : 乘客性别。

• Age : 乘客年龄。

• SibSp : 与乘客同行的兄弟姐妹(Siblings)和配偶(Spouse)数目。

• Parch : 与乘客同行的家长(Parents)和孩子(Children)数目。

• Ticket : 乘客登船所使用的船票编号。

• Fare : 乘客上船的花费。

• Cabin : 乘客所住的船舱。

• Embarked : 乘客上船时的港口,C表示Cherbourg;Q表示Queenstown;S表示Southampton。

环境设置

首先,我们需要设置 Spark 环境并创建 SparkSession 对象。以下是代码片段:

scala 复制代码
    val conf = new SparkConf().setMaster("local[*]").setAppName("practice1")
    val spark = SparkSession.builder()
      .config(conf)
      .getOrCreate()

    // 导入隐式转换相关依赖
    import spark.implicits._
    
    // 读取 CSV 文件生成 DataFrame 对象
    val df = spark.read.format("csv")
      .option("header", "true")
      .option("mode", "DROPMALFORMED")
      .load("titanic.csv")

数据预处理

在分析之前,我们需要对数据进行预处理,包括数据类型转换和缺失值处理。

修改字段数据类型

我们将字段转换为适当的数据类型:

scala 复制代码
    val md_df = df.withColumn("Pclass", df("Pclass").cast(IntegerType))
      .withColumn("Survived", df("Survived").cast(IntegerType))
      .withColumn("Age", df("Age").cast(DoubleType))
      .withColumn("SibSp", df("SibSp").cast(IntegerType))
      .withColumn("Parch", df("Parch").cast(IntegerType))
      .withColumn("Fare", df("Fare").cast(DoubleType))

删除不必要的字段

删除不需要的字段,以简化数据集:

scala 复制代码
    val df1 = md_df.drop("PassengerId").drop("Name").drop("Ticket").drop("Cabin")

处理缺失值

统计缺失值,并填充缺失数据:

scala 复制代码
    val columns: Array[String] = df1.columns
    val missing_cnt: Array[Long] = columns.map(field => df1.select(col(field)).where(col(field).isNull).count())
    val tuples: Array[(Long, String)] = missing_cnt.zip(columns)
    val result_df: DataFrame = spark.sparkContext.parallelize(tuples).toDF("missing_cnt", "column_name")
    result_df.show()
scala 复制代码
    def meanAge(dataFrame: DataFrame): Double = {
      dataFrame.select("Age")
        .na.drop()
        .agg(round(mean("Age"), 0))
        .first()
        .getDouble(0)
    }

    val df2 = df1.na.fill(Map("Age" -> meanAge(df1), "Embarked" -> "S"))
    df2.show()

数据分析

1. 生还人数统计

统计生还人数,并保存结果:

scala 复制代码
    val survived_count: DataFrame = df2.groupBy("Survived").count()
    survived_count.show()
    survived_count.coalesce(1).write.option("header", "true").csv("output/practice1/survived_count.csv")

2. 不同上船港口生还情况

scala 复制代码
val survived_embark = df2.groupBy("Embarked", "Survived").count()
survived_embark.show()
survived_embark.coalesce(1).write.option("header", "true").csv("data/practice1survived_embark.csv")

3. 存活/未存活的男女数量及比例

scala 复制代码
val survived_sex_count = df2.groupBy("Sex", "Survived").count()
val survived_sex_percent = survived_sex_count.withColumn("percent", format_number(col("count").divide(functions.sum("count").over()).multiply(100), 5))
survived_sex_percent.show()
survived_sex_percent.coalesce(1).write.option("header", "true").csv("data/practice1/survived_sex_percent.csv")

4. 不同级别乘客生还人数和占总生还人数的比例

scala 复制代码
val survived_df = df2.filter(col("Survived") === 1)
val pclass_survived_count = survived_df.groupBy("Pclass").count()
val pclass_survived_percent = pclass_survived_count.withColumn("percent", format_number(col("count").divide(functions.sum("count").over()).multiply(100), 5))
pclass_survived_percent.show()
pclass_survived_percent.coalesce(1).write.option("header", "true").csv("data/practice1/pclass_survived_percent.csv")

5. 有无同行父母/孩子的生还情况

scala 复制代码
val df4 = df2.withColumn("Parch_label", when(df2("Parch") > 0, 1).otherwise(0))
val parch_survived_count = df4.groupBy("Parch_label", "Survived").count()
parch_survived_count.show()
parch_survived_count.coalesce(1).write.option("header", "true").csv("data/practice1/parch_survived_count.csv")

6. 按照年龄分类的生还情况

scala 复制代码
val df3 = survived_df.withColumn("Age_label", when(df2("Age") <= 18, "minor").when(df2("Age") > 18 && df2("Age") <= 35, "young").when(df2("Age") > 35 && df2("Age") <= 55, "middle").otherwise("older"))
val age_survived = df3.groupBy("Age_label", "Survived").count()
age_survived.show()
age_survived.coalesce(1).write.option("header", "true").csv("data/practice1/age_survived.csv")

7. 提取乘客等级和上船费用信息

scala 复制代码
val sef = Seq("Pclass", "Fare")
val df5 = df2.select(sef.head, sef.tail: _*)
df5.show(5)
df5.coalesce(1).write.option("header", "true").csv("data/practice1/pclass_fare.csv")

总结

通过上述步骤,我们使用 Spark 对泰坦尼克号数据进行了全面的分析,从数据预处理到统计分析。希望这篇博客能帮助您更好地理解如何使用 Spark 进行数据处理和分析。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于MapReduce, MySQL, python,java,大数据,模型训练等。 hadoop hdfs yarn spark Django flask flink kafka flume datax sqoop seatunnel echart可视化 机器学习等

相关推荐
IT果果日记5 分钟前
详解DataX开发达梦数据库插件
大数据·数据库·后端
用户Taobaoapi20141 小时前
微店API秘籍!轻松获取商品详情数据
大数据·数据挖掘·数据分析
chimchim661 小时前
StarRocks导入数据-使用 Broker Load 进行异步导入
大数据·sql
jay神2 小时前
基于Python的商品爬取与可视化系统
爬虫·python·数据分析·毕业设计·可视化系统
iGarment2 小时前
服装采购跟单系统的高效管理实践
大数据·经验分享·云计算
闯闯桑3 小时前
Spark 中spark.implicits._ 中的 toDF和DataFrame 类本身的 toDF 方法
大数据·ajax·spark·scala
阿里云大数据AI技术3 小时前
【跨国数仓迁移实践9】dbt‑maxcompute 在 GoTerra 迁移过程中的落地与技术贡献
大数据
的小姐姐3 小时前
RMS设备检修管理系统_HawkEye智能运维平台_璞华大数据
大数据·运维
时空自由民.4 小时前
repo 学习教程
大数据·学习·elasticsearch
刘一说4 小时前
Elasticsearch HTTPS访问错误解决指南
大数据·elasticsearch·https