常用视觉分类、目标检测模型性能测试

说明

测试常用CV模型在单张图像上的识别速度,不包含图像读取时间,但包含图像预处理。可以在以后的应用中根据硬件配置选取合适的模型,达到最佳效果。其中推理速度为正常推理的速度,加速CPU使用openvino加速,GPU使用tensorrt加速。

CPU硬件: Intel i7 11700 16GB

GPU硬件: Nvidia rtx 3090 24GB

测试代码地址:https://github.com/lining808/cv_time_speed

CPU

目标检测

其中推理速度单位为秒,测试十张图像取平均值。mAP准确率在COCO数据集得到。旋转目标检测mAP在DOTAv1数据集得到。

模型 推理速度 加速 mAP@50-95
yolov5nu 0.117 0.023 34.3
yolov5su 0.262 0.047 43.0
yolov5mu 0.585 0.09 49.0
yolov5lu 1.165 0.172 52.2
yolov8n 0.128 0.024 37.3
yolov8s 0.323 0.053 44.9
yolov8m 0.648 0.108 50.2
yolov8l 1.252 0.236 52.9
yolov9n 0.177 0.029 38.3
yolov9s 0.372 0.05 46.8
yolov9m 0.886 0.115 51.4
yolov9l 1.239 0.148 53.0
yolov10n 0.172 0.043 38.5
yolov10s 0.365 0.075 46.3
yolov10m 0.818 0.138 51.1
yolov10l 1.374 0.242 53.2
rtdetr-l 1.261 0.182 53.0
rtdetr-x 2.232 0.321 54.8
yolov8n-obb 0.311 0.051 78.0
yolov8s-obb 0.717 0.157 79.5
yolov8m-obb 1.635 0.279 80.5
yolov8l-obb 3.139 1.127 80.7

图像分类

其中推理速度单位为秒,测试十张图像取平均值。Top-1准确率在ImageNet数据集得到。

模型 推理速度 加速 Top-1
yolov8n-cls 0.017 0.005 69.0
yolov8s-cls 0.037 0.007 73.8
yolov8m-cls 0.076 0.011 76.8
yolov8l-cls 0.146 0.029 76.8
yolov8x-cls 0.25 79.0
resnet18 0.306 72.1
resnet34 0.418 75.5
resnet50 0.903 77.2
resnet101 1.614 78.3
mobilenet_v3_small 0.093 67.4
mobilenet_v3_large 0.252 75.2
efficientnet_v2_s 0.988 83.9
efficientnet_v2_m 1.684 85.1
swin_v2_t 1.412 81.6
swin_v2_b 4.074 84.1
convnext_tiny 0.766 82.9
convnext_base 2.363 85.8

GPU

目标检测

其中推理速度单位为秒,测试十张图像取平均值。mAP准确率在COCO数据集得到。旋转目标检测mAP在DOTAv1数据集得到。

模型 推理速度 加速 mAP@50-95
yolov5nu 0.027 0.008 34.3
yolov5su 0.028 0.007 43.0
yolov5mu 0.03 0.009 49.0
yolov5lu 0.032 0.015 52.2
yolov8n 0.025 0.007 37.3
yolov8s 0.023 0.008 44.9
yolov8m 0.026 0.011 50.2
yolov8l 0.026 0.015 52.9
yolov9n 0.033 0.008 38.3
yolov9s 0.032 0.008 46.8
yolov9m 0.038 0.012 51.4
yolov9l 0.026 0.013 53.0
yolov10n 0.018 0.006 38.5
yolov10s 0.019 0.007 46.3
yolov10m 0.025 0.009 51.1
yolov10l 0.024 0.013 53.2
rtdetr-l 0.04 53.0
rtdetr-x 0.045 54.8
yolov8n-obb 0.047 0.006 78.0
yolov8s-obb 0.03 0.008 79.5
yolov8m-obb 0.039 0.014 80.5
yolov8l-obb 0.041 0.023 80.7

图像分类

其中推理速度单位为秒,测试十张图像取平均值。Top-1准确率在ImageNet数据集得到。

模型 推理速度 加速 Top-1
yolov8n-cls 0.012 0.021 69.0
yolov8s-cls 0.012 0.02 73.8
yolov8m-cls 0.013 0.027 76.8
yolov8l-cls 0.014 0.029 76.8
yolov8x-cls 0.016 0.03 79.0
resnet18 0.042 72.1
resnet34 0.046 75.5
resnet50 0.055 77.2
resnet101 0.063 78.3
mobilenet_v3_small 0.054 67.4
mobilenet_v3_large 0.056 75.2
efficientnet_v2_s 0.074 83.9
efficientnet_v2_m 0.076 85.1
swin_v2_t 0.127 81.6
swin_v2_b 0.145 84.1
convnext_tiny 0.048 82.9
convnext_base 0.068 85.8

结论

总体来说YOLO不论是分类还是目标检测,基本上做到了速度和精度的均衡。

openvino加速可以比pt推理快6倍左右,但需要CPU是英特尔平台并且有集成显卡。精度有一定程度下降,平均下降2-3%。onnx推理精度几乎保持不变,速度提升约3倍。

tensorrt加速可以比pt推理快3倍左右,需要GPU为英伟达平台。精度基本保持不变,下降在1%内。

推荐模型

图像分类

速度 均衡 精度
CPU yolov8n-cls yolov8m-cls efficientnet_v2_m
GPU yolov8n-cls yolov8m-cls convnext_base

目标检测

速度 均衡 精度
CPU yolov8n yolov8m yolov9l
GPU yolov10n yolov10m yolov10l

推理格式

CPU推理有集显使用openvino,无集显使用onnx。

GPU推理使用tensorrt

相关推荐
lipWOFb几秒前
基于 Xilinx K7 325t 的千兆网 UDP 协议实现小记
人工智能
Zomcxj1 分钟前
PasteLabel 图像编辑器:贴图标注,解决样本采集难题
人工智能·python·编辑器·贴图
minhuan1 分钟前
大模型应用:大模型瘦身:量化、蒸馏、剪枝的基础原理与应用场景深度解析.56
人工智能·大模型应用·模型蒸馏·大模型量化·模型剪枝
德育处主任Pro2 分钟前
『NAS』不止娱乐,NAS也是生产力,在绿联部署AI工作流工具-n8n
人工智能·docker·ai·群晖·nas·绿联·极空间
轻竹办公PPT2 分钟前
AI 生成 PPT 真能替代人工吗?多款工具深度测试
人工智能·python·powerpoint
enjoy编程3 分钟前
Spring-AI Agent Skills 赋予AI智能体“即插即用”的专业超能力
人工智能·ai·智能体·spring ai·opencode·agent skill
Codebee5 分钟前
ooder开源SuperAgent:重新定义AI能力协作
人工智能
资讯雷达6 分钟前
重塑政务服务范式——移动云加速推动AI大模型落地政务领域
人工智能·政务
AI即插即用6 分钟前
超分辨率重建(代码实践) | CVPR 2025 LSRNA:利用隐空间超分与噪声对齐,打破扩散模型生成 4K 图像的效率瓶颈
图像处理·人工智能·深度学习·神经网络·计算机视觉·超分辨率重建
后端小张12 分钟前
【AI 学习】解锁Claude Skills:开启AI应用新维度
人工智能·深度学习·学习·自然语言处理·gpt-3·claude·skill