How do I format markdown chatgpt response in tkinter frame python?

题意:怎样在Tkinter框架中使用Python来格式化Markdown格式的ChatGPT响应?

问题背景:

Chatgpt sometimes responds in markdown language. Sometimes the respond contains ** ** which means the text in between should be bold and ### text ### which means that text is a heading. I want to format this correctly and display it properly in tkinter. If it's bold or a heading, it should be formatted to bold or to a heading in tkintter. How to do this?

ChatGPT有时会以Markdown语言回应。有时回应中包含** **,这表示中间的文本应该是粗体的;而### text ###则表示该文本是一个标题。我想在Tkinter中正确地格式化并显示这些文本。如果它是粗体或标题,则应该在Tkinter中以粗体或标题的形式显示。如何做到这一点?

My code:

python 复制代码
import tkinter as tk
from tkinter import ttk
from datetime import datetime
import openai
import json
import requests


history = []
# Create a function to use ChatGPT 3.5 turbo to answer a question based on the prompt
def get_answer_from_chatgpt(prompt, historyxx):
    global history

    openai.api_key = "xxxxxxx"
    append_to_chat_log(message="\n\n\n")
    append_to_chat_log("Chatgpt")

    print("Trying")

    messages = [
            {"role": "user", "content": prompt}
        ]

    try:
        stream = openai.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=messages,
            stream=True,
            
        )
        
        for chunk in stream:
            chunk = chunk.choices[0].delta.content
            chunk = str(chunk)
            if chunk != "None":
                append_to_chat_log(message=chunk)
        
        
        append_to_chat_log(message="\n\n\n")
        print("Streaming complete")
               
    except Exception as e:
        print(e)
        return "Sorry, an error occurred while processing your request."

# Create a function to use OpenAI to answer a question based on the search results

def append_to_chat_log(sender=None, message=None):
    chat_log.config(state="normal")
    if sender:
        chat_log.insert("end", f"{sender}:\n", "sender")
    if message:
        chat_log.insert("end", message)
    chat_log.config(state="disabled")
    chat_log.see("end")
    chat_log.update()


def send_message(event=None):
    global history
    message = message_entry.get(1.0, "end-1c") 
    message = message.strip()
    message_entry.delete(1.0, tk.END)
    message_entry.update()
    
    if not message:
        pass 
    else:
              
        append_to_chat_log("User", message)
        history.append(("user", message))
        if len(history) >4:
            history = history[-4:]
        print(message)
        response = get_answer_from_chatgpt(message, history)
        
        history.append(("assistant", response))

root = tk.Tk()

root.title("Chat")

# Maximize the window
root.attributes('-zoomed', True)

chat_frame = tk.Frame(root)
chat_frame.pack(expand=True, fill=tk.BOTH)

chat_log = tk.Text(chat_frame, state='disabled', wrap='word', width=70, height=30, font=('Arial', 12), highlightthickness=0, borderwidth=0)
chat_log.pack(side=tk.LEFT, padx=(500,0), pady=10)

message_entry = tk.Text(root, padx=17, insertbackground='white', width=70, height=1, spacing1=20, spacing3=20, font=('Open Sans', 14))
message_entry.pack(side=tk.LEFT, padx=(500, 0), pady=(0, 70))  # Adjust pady to move it slightly above the bottom
message_entry.mark_set("insert", "%d.%d" % (0,0))
message_entry.bind("<Return>", send_message)

root.mainloop()

问题解决:

I solved my own question 我解决了我自己提出的问题

python 复制代码
import tkinter as tk
from datetime import datetime
import openai

history = []

# Create a function to use ChatGPT 3.5 turbo to answer a question based on the prompt
def get_answer_from_chatgpt(prompt, historyxx):
    global history

    openai.api_key = "xxxx"
    append_to_chat_log(message="\n\n\n")
    append_to_chat_log("Chatgpt")

    print("Trying")

    messages = [
            {"role": "user", "content": prompt}
        ]

    try:
        stream = openai.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=messages,
            stream=True,
        )
        
        buffer = ""
        heading =  ""
        bold = False
        while True:
            chunk = next(stream)
            chunk = chunk.choices[0].delta.content
            chunk = str(chunk)
            if chunk != "None":
                buffer += chunk
                if "**" in buffer:
                    while "**" in buffer:
                        pre, _, post = buffer.partition("**")
                        append_to_chat_log(message=pre, bold=bold)
                        bold = not bold
                        buffer = post
                if "###" in buffer:
                    while "###" in buffer:
                        pre, _, post = buffer.partition("###")
                        append_to_chat_log(message=pre, bold=heading)
                        heading = not heading
                        buffer = post
                else:
                    append_to_chat_log(message=buffer, bold=bold)
                    buffer = ""
        
        append_to_chat_log(message="\n\n\n")
        print("Streaming complete")
               
    except Exception as e:
        print(e)
        return "Sorry, an error occurred while processing your request."

def append_to_chat_log(sender=None, message=None, bold=False, heading=False):
    chat_log.config(state="normal")
    if sender:
        chat_log.insert("end", f"{sender}:\n", "sender")
    if message:
        if bold:
            chat_log.insert("end", message, "bold")
        if heading:
            chat_log.insert("end", message, "heading")
        else:
            chat_log.insert("end", message)
    chat_log.config(state="disabled")
    chat_log.see("end")
    chat_log.update()

def send_message(event=None):
    global history
    message = message_entry.get(1.0, "end-1c")
    message = message.strip()
    message_entry.delete(1.0, tk.END)
    message_entry.update()
    
    if not message:
        pass 
    else:
        append_to_chat_log("User", message)
        history.append(("user", message))
        if len(history) > 4:
            history = history[-4:]
        print(message)
        response = get_answer_from_chatgpt(message, history)
        history.append(("assistant", response))

root = tk.Tk()
root.title("Chat")

# Maximize the window
root.attributes('-zoomed', True)

chat_frame = tk.Frame(root)
chat_frame.pack(expand=True, fill=tk.BOTH)

chat_log = tk.Text(chat_frame, state='disabled', wrap='word', width=70, height=30, font=('Arial', 12), highlightthickness=0, borderwidth=0)
chat_log.tag_configure("sender", font=('Arial', 12, 'bold'))
chat_log.tag_configure("bold", font=('Arial', 12, 'bold'))
chat_log.tag_configure("heading", font=('Arial', 16, 'bold'))
chat_log.pack(side=tk.LEFT, padx=(500,0), pady=10)

message_entry = tk.Text(root, padx=17, insertbackground='white', width=70, height=1, spacing1=20, spacing3=20, font=('Open Sans', 14))
message_entry.pack(side=tk.LEFT, padx=(500, 0), pady=(0, 70))  # Adjust pady to move it slightly above the bottom
message_entry.mark_set("insert", "%d.%d" % (0,0))
message_entry.bind("<Return>", send_message)

root.mainloop()
相关推荐
Learn Beyond Limits27 分钟前
Transfer Learning|迁移学习
人工智能·python·深度学习·神经网络·机器学习·ai·吴恩达
love530love2 小时前
【保姆级教程】阿里 Wan2.1-T2V-14B 模型本地部署全流程:从环境配置到视频生成(附避坑指南)
人工智能·windows·python·开源·大模型·github·音视频
He1955013 小时前
Go初级之十:错误处理与程序健壮性
开发语言·python·golang
和鲸社区3 小时前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
豌豆花下猫4 小时前
Python 潮流周刊#118:Python 异步为何不够流行?(摘要)
后端·python·ai
THMAIL4 小时前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
wheeldown4 小时前
【数学建模】数据预处理入门:从理论到动手操作
python·数学建模·matlab·python3.11
多打代码5 小时前
2025.09.05 用队列实现栈 & 有效的括号 & 删除字符串中的所有相邻重复项
python·算法
@CLoudbays_Martin115 小时前
为什么动态视频业务内容不可以被CDN静态缓存?
java·运维·服务器·javascript·网络·python·php
程序猿炎义5 小时前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习