-
首先yowov2是一款简单且实时的时空动作检测方案,fastreid是行人重识别(身份识别)
- yowov2介绍链接直达
- fastreid链接直达
- 为时空动作检测任务设计实时框架仍然是一个挑战。YOWOv2 提出了一种新颖的实时动作检测框架,利用三维骨干和二维骨干进行准确的动作检测。经过改进,YOWOv2 明显优于 YOWO,并且仍然可以保持实时检测。YOWOv2 在数据集 UCF101-24 上以超过 20 FPS 的速度实现了 87.0% 的视频帧 mAP 和 52.8% 的全视频 mAP。在数据集 AVA 上,YOWOv2 在提速 20 FPS 的同时实现了 21.7% 的视频帧 mAP。
-
引入身份识别可以精确记录某个人的动作信息
-
效果图
-
ui界面 含有摄像头和视频检测, 同时右侧可以选择模型, 摄像头, 和是否使用CUDA
-
动作识别预览(弯腰和站立, 动作很多(摔倒动作,骑马动作都有, 如果需要自己训练动作,则自己制作ava数据集进行模型训练))
-
身份识别预览(左下角)身份识别 FastReID利用预训练的深度卷积神经网络(如ResNet、MobileNet等)作为基础模型,通过特征提取网络来提取图像中的行人特征。可以用来描述行人的外观特征、姿势等信息。并通过计算余弦相似度来度量在特征空间中度量行人之间的相似度。
-
-
详细实现:
-
首先创建YOWOv2环境,分为虚拟环境和Anaconda环境两种
-
先讲使用虚拟环境的,linux上主环境的是 python3.8,
1 创建虚拟环境, 当前文件夹就会有一个yowov2-virtual的文件夹
pythonpython3 -m vene yowov2-virtual
2, 激活环境
pythonsource yowov2-virtual/bin/activate
3, 安装环境(pytorch1.10.1和cuda10.2) (这个因为是外网的,需要梯子(不然很慢))
pythonpip install torch==1.10.1+cu102 torchvision==0.11.2+cu102 -f https://download.pytorch.org/whl/cu102/torch_stable.html
- 进入项目安装依赖
pythonpip install -r requirements.txt
如果使用anaconda, 则
- 创建anaconda环境
pythonconda create -n yowov2-fastreid python==3.8
- 然后激活环境(如果activate 不行, 则试试source)
pythonconda activate yowov2-fastreid
- 与上面第三步一致 之后再运行ui_main.py 启动ui界面
-
-
详细使用信息
YOWOv2(yowov2)动作识别+Fastreid身份识别 详细安装与实现
鳄鱼的眼药水2024-07-14 21:05
相关推荐
行路见知36 分钟前
1.5 Go切片使用yuyuyue24940 分钟前
lstm预测纠结哥_Shrek1 小时前
自然语言处理-词嵌入 (Word Embeddings)Zfox_1 小时前
DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具CodeLinghu2 小时前
Agentic Automation:基于Agent的企业认知架构重构与数字化转型跃迁---我的AI经典战例银行数字化转型导师坚鹏2 小时前
数字化转型导师坚鹏:AI大模型DEEPSEEK重构人工智能格局的里程碑子燕若水2 小时前
uv 安装包X.AI6662 小时前
【大模型LLM面试合集】大语言模型架构_MHA_MQA_GQA智识世界Intelligence2 小时前
DeepSeek的崛起与全球科技市场的震荡weixin_307779132 小时前
Python获取能唯一确定一棵给定的树的最少数量的拓扑序列