计算机视觉之ShuffleNet图像分类

前言

ShuffleNetV1是一种计算高效的CNN模型,旨在在移动端利用有限的计算资源达到最佳的模型精度。其设计核心是引入了Pointwise Group Convolution和Channel Shuffle两种操作,以降低模型的计算量并保持精度。与MobileNet类似,ShuffleNetV1通过设计更高效的网络结构来实现模型的压缩和加速。通过几乎将参数量降低到最小,ShuffleNet在保持较高准确率的前提下具有较快的运算速度,单位参数量对模型准确率的贡献非常高。

模型架构

ShuffleNet最显著的特点是通过对不同通道进行重排来解决Group Convolution带来的问题,并且在较小的计算量下取得了较高的准确率。

Pointwise Group Convolution

分组卷积是一种卷积操作,相比普通卷积,它将输入特征图分成多个组,在每个组内进行卷积操作。这种方法可以减少参数量,但输出通道数仍然等于卷积核的数量。

Channel Shuffle

Group Convolution存在的问题是不同组别的通道无法进行信息交流,导致特征图之间不通信,类似于分成了互不相干的道路。为了解决这个问题,ShuffleNet引入了Channel Shuffle机制,通过将不同分组通道均匀分散重组,使网络能够处理不同组别通道的信息。

ShuffleNet模块

ShuffleNet对ResNet中的Bottleneck结构进行了改进,主要包括将开始和最后的1 × 1卷积模块改成Point Wise Group Convolution,引入Channel Shuffle来进行不同通道的信息交流,以及对降采样模块中的步长和池化方式进行调整。

构建ShuffleNet网络

ShuffleNet网络结构包括卷积层、池化层和多个重复的ShuffleNet模块,通过下采样模块和全局平均池化得到最终的分类概率。

模型训练和评估

采用CIFAR-10数据集对ShuffleNet进行预训练。

下载数据

模型训练

本段文字描述了使用随机初始化参数进行预训练的步骤。首先定义了网络结构为ShuffleNetV1,参数量选择"2.0x",损失函数为交叉熵损失,学习率经过4轮warmup后采用余弦退火,优化器采用Momentum。然后使用train.model中的Model接口封装模型、损失函数和优化器,并使用model.train()对网络进行训练。最后通过传入回调函数ModelCheckpoint、CheckpointConfig、TimeMonitor和LossMonitor来打印训练信息并保存ckpt文件。

模型评估

对CIFAR-10测试集上的模型进行评估,设置评估模型的路径,加载数据集并设置Top 1、Top 5的评估标准,最后使用model.eval()接口对模型进行评估。

模型预测

在CIFAR-10的测试集上对模型进行预测,并将预测结果可视化。

总结

ShuffleNet 是一种计算高效的轻量级 CNN 模型,主要应用在移动端。它的核心设计是引入了 Pointwise Group Convolution 和 Channel Shuffle 两种操作,在保持精度的同时大大降低了模型的计算量。

相关推荐
飞哥数智坊几秒前
AI编程实战:数据大屏生成初探
人工智能
蚝油菜花2 分钟前
Cua:Mac用户狂喜!这个开源框架让AI直接接管你的电脑,快速实现AI自动化办公
人工智能·开源
蚝油菜花2 分钟前
AutoAgent:无需编程!接入DeepSeek用自然语言创建和部署AI智能体!港大开源框架让AI智能体开发变成填空题
人工智能·开源
nuise_4 分钟前
李宏毅机器学习笔记06 | 鱼和熊掌可以兼得的机器学习 - 内容接宝可梦
人工智能·笔记·机器学习
声网18 分钟前
MiniMax 发布新 TTS 模型 Speech-02,轻松制作长篇有声内容;Meta 高端眼镜年底推出:售价上千美元丨日报
人工智能
HeteroCat22 分钟前
OpenAI 官方学院 -- 提示词课程要点
人工智能·chatgpt
每天做一点改变24 分钟前
AI Agent成为行业竞争新焦点:技术革新与商业重构的双重浪潮
人工智能·重构
大美B端工场-B端系统美颜师27 分钟前
定制化管理系统与通用管理系统,谁更胜一筹?
人工智能·信息可视化·数据挖掘·数据分析
生信小鹏27 分钟前
Nature旗下 | npj Digital Medicine | 图像+转录组+临床变量三合一,多模态AI预测化疗反应,值得复现学习的完整框架
人工智能·学习·免疫治疗·scrna-seq·scrna
OpenLoong 开源社区41 分钟前
技术视界 | 从哲学到技术:人形机器人感知导航的探索(下篇)
人工智能·机器人·开源社区·人形机器人·openloong