计算机视觉之ShuffleNet图像分类

前言

ShuffleNetV1是一种计算高效的CNN模型,旨在在移动端利用有限的计算资源达到最佳的模型精度。其设计核心是引入了Pointwise Group Convolution和Channel Shuffle两种操作,以降低模型的计算量并保持精度。与MobileNet类似,ShuffleNetV1通过设计更高效的网络结构来实现模型的压缩和加速。通过几乎将参数量降低到最小,ShuffleNet在保持较高准确率的前提下具有较快的运算速度,单位参数量对模型准确率的贡献非常高。

模型架构

ShuffleNet最显著的特点是通过对不同通道进行重排来解决Group Convolution带来的问题,并且在较小的计算量下取得了较高的准确率。

Pointwise Group Convolution

分组卷积是一种卷积操作,相比普通卷积,它将输入特征图分成多个组,在每个组内进行卷积操作。这种方法可以减少参数量,但输出通道数仍然等于卷积核的数量。

Channel Shuffle

Group Convolution存在的问题是不同组别的通道无法进行信息交流,导致特征图之间不通信,类似于分成了互不相干的道路。为了解决这个问题,ShuffleNet引入了Channel Shuffle机制,通过将不同分组通道均匀分散重组,使网络能够处理不同组别通道的信息。

ShuffleNet模块

ShuffleNet对ResNet中的Bottleneck结构进行了改进,主要包括将开始和最后的1 × 1卷积模块改成Point Wise Group Convolution,引入Channel Shuffle来进行不同通道的信息交流,以及对降采样模块中的步长和池化方式进行调整。

构建ShuffleNet网络

ShuffleNet网络结构包括卷积层、池化层和多个重复的ShuffleNet模块,通过下采样模块和全局平均池化得到最终的分类概率。

模型训练和评估

采用CIFAR-10数据集对ShuffleNet进行预训练。

下载数据

模型训练

本段文字描述了使用随机初始化参数进行预训练的步骤。首先定义了网络结构为ShuffleNetV1,参数量选择"2.0x",损失函数为交叉熵损失,学习率经过4轮warmup后采用余弦退火,优化器采用Momentum。然后使用train.model中的Model接口封装模型、损失函数和优化器,并使用model.train()对网络进行训练。最后通过传入回调函数ModelCheckpoint、CheckpointConfig、TimeMonitor和LossMonitor来打印训练信息并保存ckpt文件。

模型评估

对CIFAR-10测试集上的模型进行评估,设置评估模型的路径,加载数据集并设置Top 1、Top 5的评估标准,最后使用model.eval()接口对模型进行评估。

模型预测

在CIFAR-10的测试集上对模型进行预测,并将预测结果可视化。

总结

ShuffleNet 是一种计算高效的轻量级 CNN 模型,主要应用在移动端。它的核心设计是引入了 Pointwise Group Convolution 和 Channel Shuffle 两种操作,在保持精度的同时大大降低了模型的计算量。

相关推荐
黎燃18 分钟前
AI驱动的供应链管理:需求预测实战指南
人工智能
天波信息技术分享26 分钟前
AI云电脑盒子技术分析——从“盒子”到“算力云边缘节点”的跃迁
人工智能·电脑
CoderJia程序员甲39 分钟前
GitHub 热榜项目 - 日榜(2025-08-16)
人工智能·ai·开源·github
KirkLin40 分钟前
Kirk:练习时长两年半的AI Coding经验
人工智能·程序员·全栈
mit6.8241 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
挽淚1 小时前
(小白向)什么是Prompt,RAG,Agent,Function Calling和MCP ?
人工智能·程序员
Jina AI1 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
科大饭桶2 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
什么都想学的阿超2 小时前
【大语言模型 02】多头注意力深度剖析:为什么需要多个头
人工智能·语言模型·自然语言处理
努力还债的学术吗喽2 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写