计算机视觉之ShuffleNet图像分类

前言

ShuffleNetV1是一种计算高效的CNN模型,旨在在移动端利用有限的计算资源达到最佳的模型精度。其设计核心是引入了Pointwise Group Convolution和Channel Shuffle两种操作,以降低模型的计算量并保持精度。与MobileNet类似,ShuffleNetV1通过设计更高效的网络结构来实现模型的压缩和加速。通过几乎将参数量降低到最小,ShuffleNet在保持较高准确率的前提下具有较快的运算速度,单位参数量对模型准确率的贡献非常高。

模型架构

ShuffleNet最显著的特点是通过对不同通道进行重排来解决Group Convolution带来的问题,并且在较小的计算量下取得了较高的准确率。

Pointwise Group Convolution

分组卷积是一种卷积操作,相比普通卷积,它将输入特征图分成多个组,在每个组内进行卷积操作。这种方法可以减少参数量,但输出通道数仍然等于卷积核的数量。

Channel Shuffle

Group Convolution存在的问题是不同组别的通道无法进行信息交流,导致特征图之间不通信,类似于分成了互不相干的道路。为了解决这个问题,ShuffleNet引入了Channel Shuffle机制,通过将不同分组通道均匀分散重组,使网络能够处理不同组别通道的信息。

ShuffleNet模块

ShuffleNet对ResNet中的Bottleneck结构进行了改进,主要包括将开始和最后的1 × 1卷积模块改成Point Wise Group Convolution,引入Channel Shuffle来进行不同通道的信息交流,以及对降采样模块中的步长和池化方式进行调整。

构建ShuffleNet网络

ShuffleNet网络结构包括卷积层、池化层和多个重复的ShuffleNet模块,通过下采样模块和全局平均池化得到最终的分类概率。

模型训练和评估

采用CIFAR-10数据集对ShuffleNet进行预训练。

下载数据

模型训练

本段文字描述了使用随机初始化参数进行预训练的步骤。首先定义了网络结构为ShuffleNetV1,参数量选择"2.0x",损失函数为交叉熵损失,学习率经过4轮warmup后采用余弦退火,优化器采用Momentum。然后使用train.model中的Model接口封装模型、损失函数和优化器,并使用model.train()对网络进行训练。最后通过传入回调函数ModelCheckpoint、CheckpointConfig、TimeMonitor和LossMonitor来打印训练信息并保存ckpt文件。

模型评估

对CIFAR-10测试集上的模型进行评估,设置评估模型的路径,加载数据集并设置Top 1、Top 5的评估标准,最后使用model.eval()接口对模型进行评估。

模型预测

在CIFAR-10的测试集上对模型进行预测,并将预测结果可视化。

总结

ShuffleNet 是一种计算高效的轻量级 CNN 模型,主要应用在移动端。它的核心设计是引入了 Pointwise Group Convolution 和 Channel Shuffle 两种操作,在保持精度的同时大大降低了模型的计算量。

相关推荐
昨日之日20061 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_7 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习