samout 结构再优化 收敛速度再加快

代码

python 复制代码
import torch
import numpy as np


class MaxState(torch.nn.Module):
    def __init__(self, hidden_dim, heads, win):
        super(MaxState, self).__init__()

        assert hidden_dim % heads == 0, "Hidden size must be divisible by the number of heads."

        self.head_size = hidden_dim // heads
        self.head = torch.nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.state = torch.nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.head_num = heads
        self.win = win
        self.hidden = hidden_dim
        self.mask = torch.triu(torch.ones([win, win])).to("cuda")
        self.layer_nor = torch.nn.LayerNorm(hidden_dim)

    def forward(self, input_data, state=None):
        # self.head.to("cuda")
        b, s, k, h, w = input_data.shape[0], input_data.shape[1], self.head_num, self.head_size, self.win

        window = torch.ones([1, w]).to("cuda")

        out = self.head(input_data)

        out = out.unsqueeze(-1) @ window

        out = out.permute([0, 2, 1, 3])

        one_list = []
        if state is None:
            state = torch.ones([out.shape[0], out.shape[1], 1, 1]) * float("-inf")
            state = state.to("cuda")
        for i in range(0, s, w):

            state.reshape([state.shape[0], -1])
            j = w + i
            one = out[:, :, i:j]
            _, _, r, c = one.shape
            if r != self.win:

                one = torch.where(self.mask[:r, :] == 1, one, torch.Tensor([-float('inf')]).to("cuda"))

            else:
                one = torch.where(self.mask == 1, one, torch.Tensor([-float('inf')]).to("cuda"))

            if i == 0:

                one = torch.concat([one, state @ window], axis=2)
                state, _ = torch.max(one, axis=2, keepdim=True)


            else:

                state1, _ = torch.max(one, axis=2, keepdim=True)

                # state = torch.sin(self.state(state1.reshape([state1.shape[0], -1]))*state.reshape([state.shape[0], -1]))
                state1 = self.state(state1.permute([0, 3, 1, 2]).reshape([state1.shape[0], -1, state1.shape[1]]))
                state = state1.permute([0, 2, 1]).unsqueeze(-2) + state
                # state = state.reshape(state1.shape)

                one = torch.concat([one, state], axis=2)
                state, _ = torch.max(one, axis=2, keepdim=True)

            one = state.reshape([b, k, h, w])

            state = state[..., -1:]
            if r != self.win:
                one = one[..., :r]

            one = one.permute([0, 3, 1, 2])
            one_list.append(one)

        out = torch.concat(one_list, 1)

        out = out.reshape([b, s, -1])

        return out, state


class FeedForward(torch.nn.Module):
    def __init__(self, hidden_size):
        super(FeedForward, self).__init__()

        self.ffn1 = torch.nn.Linear(hidden_size, hidden_size * 2)
        self.ffn2 = torch.nn.Linear(hidden_size * 2, hidden_size)
        self.gate = torch.nn.Linear(hidden_size, hidden_size * 2)
        self.relu = torch.nn.ReLU()

    def forward(self, x):
        x1 = self.ffn1(x)

        x2 = self.relu(self.gate(x))

        x = x1 * x2

        x = self.ffn2(x)
        return x


class DecoderLayer(torch.nn.Module):
    def __init__(self, hidden_size, num_heads):
        super(DecoderLayer, self).__init__()
        # self.self_attention = MaskMultiHeadAttention(hidden_size, num_heads)
        self.self_attention = MaxState(hidden_size, num_heads, 8)
        self.ffn = FeedForward(hidden_size)
        self.layer_norm = torch.nn.LayerNorm(hidden_size)

    def forward(self, x, state=None, seq_len=None):
        x1, state = self.self_attention(x, state)

        x = self.layer_norm(self.ffn(x1) + x)  # Feed-Forward with residual connection

        return x, state


class SamOut(torch.nn.Module):
    def __init__(self, voc_size, hidden_size, num_heads, num_layers):
        super(SamOut, self).__init__()
        self.em = torch.nn.Embedding(voc_size, hidden_size, padding_idx=3)
        self.pos = torch.nn.Embedding(1024, hidden_size)

        self.decoder_layers = torch.nn.ModuleList([DecoderLayer(hidden_size, num_heads) for _ in range(num_layers)])
        self.head = torch.nn.Linear(hidden_size, voc_size)
        self.head_state = torch.nn.Linear(hidden_size, num_layers)
        self.layer_nor=torch.nn.LayerNorm(hidden_size)
        self.down=torch.nn.ModuleList([torch.nn.Linear(2*hidden_size,hidden_size) for _ in range(num_layers)])

    def forward(self, x, state=None, seq_len=None):
        x = self.em(x)
        if x.shape[1] >= 1024:
            pos = self.pos(torch.range(0, x.shape[1]-1).long() // 1024).unsqueeze(0)
            pos = self.pos(torch.range(0, x.shape[1]-1).long() % 1024).unsqueeze(0) + pos

        else:
            pos = self.pos(torch.range(0, x.shape[1]-1).long().to("cuda")).unsqueeze(0)

        if state is None:
            state = [None] * len(self.decoder_layers)

        i = 0

        for decoder_layer in self.decoder_layers:
            x1, state[i] = decoder_layer(self.down[i](torch.concat([torch.zeros([x.shape[0],1,1]).to("cuda")+pos , x],-1)), state[i])
            x = x1 + x

            i += 1
        state_data = self.head_state((torch.concat(state, -1).squeeze(-2)).permute([0, 2, 1]))
        return self.head(x), state, state_data


if __name__ == '__main__':
    net = SamOut(235, 256, 16, 4)
    net(torch.randint(0, 200, [2, 3000]))

解释

这段代码定义了一个基于PyTorch的神经网络模型,该模型包含自定义的解码器层和输出层,用于处理序列数据。下面是代码的逐行解析:

python 复制代码
import torch
import numpy as np
  • 导入PyTorch库和NumPy库。
python 复制代码
class MaxState(torch.nn.Module):
    def __init__(self, hidden_dim, heads, win):
        super(MaxState, self).__init__()
  • 定义一个名为MaxState的类,继承自torch.nn.Module。这是自定义的一个模块,用于处理状态的最大化。
python 复制代码
        assert hidden_dim % heads == 0, "Hidden size must be divisible by the number of heads."
  • 断言检查,确保隐藏层的维度可以被注意力头的数量整除。
python 复制代码
        self.head_size = hidden_dim // heads
        self.head = torch.nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.state = torch.nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.head_num = heads
        self.win = win
        self.hidden = hidden_dim
        self.mask = torch.triu(torch.ones([win, win])).to("cuda")
        self.layer_nor = torch.nn.LayerNorm(hidden_dim)
  • 初始化类成员变量,包括线性层、注意力头数量、窗口大小、掩码和层归一化。
python 复制代码
    def forward(self, input_data, state=None):
        # self.head.to("cuda")
        b, s, k, h, w = input_data.shape[0], input_data.shape[1], self.head_num, self.head_size, self.win
  • 前向传播方法,获取输入数据的形状参数。
python 复制代码
        window = torch.ones([1, w]).to("cuda")
  • 创建一个窗口张量,并将其移动到CUDA设备。
python 复制代码
        out = self.head(input_data)
  • 应用线性层到输入数据。
python 复制代码
        out = out.unsqueeze(-1) @ window
  • 扩展维度并进行矩阵乘法。
python 复制代码
        out = out.permute([0, 2, 1, 3])
  • 调整输出的维度顺序。
python 复制代码
        one_list = []
        if state is None:
            state = torch.ones([out.shape[0], out.shape[1], 1, 1]) * float("-inf")
            state = state.to("cuda")
  • 初始化状态张量,如果状态为None,则创建一个初始状态。
python 复制代码
        for i in range(0, s, w):
            # ... (省略中间代码)
  • 循环处理每个窗口大小的数据块。
python 复制代码
        return out, state
  • 返回处理后的输出和状态。
    接下来是FeedForwardDecoderLayerSamOut类的定义,这些类分别实现了前馈网络、解码器层和整个模型的输出部分。代码结构与MaxState类类似,包含了初始化和前向传播方法。
python 复制代码
if __name__ == '__main__':
    net = SamOut(235, 256, 16, 4)
    net(torch.randint(0, 200, [2, 3000]))
  • 如果当前脚本作为主程序运行,创建一个SamOut模型实例,并使用随机整数张量作为输入进行测试。
相关推荐
wangyue43 分钟前
c# 深度模型入门
深度学习
川石课堂软件测试17 分钟前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
985小水博一枚呀24 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan25 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀29 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路38 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子44 分钟前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测