Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载

Moonshine 是由 Useful Sensors 公司推出的一系列「语音到文本(speech-to-text, STT)转换模型」,旨在为资源受限设备提供快速而准确的「自动语音识别(ASR)服务」。Moonshine 的设计特别适合于需要即时响应的应用场景,如实时转录和语音命令识别。相比同类产品,如 OpenAI 的 Whisper,Moonshine 在处理速度上提高了五倍,并且在多个标准数据集上展示了更低的词错误率(WER)。

Moonshine 在多个维度上超越了现有的语音识别解决方案,特别是在处理速度和准确度方面。据官方报告,Moonshine 的处理速度「比 OpenAI 的 Whisper 快五倍」,并且在词错误率方面也表现得更好。这种显著的优势使得 Moonshine 成为资源受限环境下语音识别的理想选择。

更小体积的模型:

moonshine/base 模型参数大小为 61 MB。moonshine/tiny 模型仅需 27 MB RAM。适用于内存非常有限的设备。

更快的处理速度

Moonshine 的处理速度比 Whisper 快 1.7 倍。对于 10 秒的短音频片段,处理速度可达 Whisper 的五倍。高效处理能力和低资源需求确保实时或接近实时的语音转文字功能。

优点说完了,说说缺点,目前只支持英文 ,期待后期更多语种的支持。有类似英语转换需求的可以体验下,速度确实快,准确率也高。

使用教程: (CPU可运行,建议独立显卡N卡使用,速度更快)

上传一段需要识别的音频,选择模型,点转写即可

**一键整合包下载:**点赞收藏,后台私信 语音识别

相关推荐
SmartRadio7 分钟前
在CH585M代码中如何精细化配置PMU(电源管理单元)和RAM保留
linux·c语言·开发语言·人工智能·单片机·嵌入式硬件·lora
旦莫13 分钟前
Pytest教程:Pytest与主流测试框架对比
人工智能·python·pytest
●VON17 分钟前
从模型到价值:MLOps 工程体系全景解析
人工智能·学习·制造·von
智慧地球(AI·Earth)39 分钟前
Codex配置问题解析:wire_api格式不匹配导致的“Reconnecting...”循环
开发语言·人工智能·vscode·codex·claude code
GISer_Jing43 分钟前
AI:多智能体协作与记忆管理
人工智能·设计模式·aigc
qq_411262421 小时前
纯图像传感器(只出像素),还是 Himax WiseEye/WE1/WE-I Plus 这类带处理器、能在端侧跑模型并输出“metadata”的模块
人工智能·嵌入式硬件·esp32·四博智联
InfiSight智睿视界1 小时前
门店智能体技术如何破解美容美发连锁的“标准执行困境”
大数据·运维·人工智能
Toky丶1 小时前
【文献阅读】BitNet Distillation
人工智能
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-01-09
人工智能·经验分享·神经网络·搜索引擎·产品运营
莫非王土也非王臣1 小时前
卷积神经网络与应用
人工智能·神经网络·cnn