【Pytorch】数据集的加载和处理(一)

Pytorch torchvision 包提供了很多常用数据集
数据按照用途一般分为三组:训练(train)、验证(validation)和测试(test)。使用训练数据集来训练模型,使用验证数据集跟踪模型在训练期间的性能,使用测试数据集对模型进行最终评估。

目录

导入MNIST训练数据集

提取训练数据和标签

同理操作验证数据集

给张量添加维度

打印示例图像


导入MNIST训练数据集

从 torchvision导入MNIST训练数据集

复制代码
import torch
import torchvision
from torchvision import datasets
train_data=datasets.MNIST("./data",train=True,download=True)

datasets.MNIST是Pytorch的内置函数

train=True指导入的数据作为训练数据集

download=True若根目录下没有数据集时自动下载

导入完成后可以看到MINST文件内的数据集

提取训练数据和标签

复制代码
x_train, y_train=train_data.data,train_data.targets
print(x_train.shape)
print(y_train.shape)

x_train存储60000张28*28的图片,y_train存储60000张图片对应的数字(label)

同理操作验证数据集

从 torchvision导入MNIST验证数据集并提取数据和标签

复制代码
val_data=datasets.MNIST("./data", train=False, download=True)
x_val,y_val=val_data.data, val_data.targets
print(x_val.shape)
print(y_val.shape)

给张量添加维度

Pytorch中张量可以是一维、二维、三维或者更高维度的数据结构。一维张量类似于向量,二维张量类似于矩阵,三维张量类似一系列矩阵的堆叠。添加新的维度可以更好地对数据进行表示和处理。

复制代码
if len(x_train.shape)==3:
    x_train=x_train.unsqueeze(1)
print(x_train.shape)

if len(x_val.shape)==3:
    x_val=x_val.unsqueeze(1)
print(x_val.shape)

.unsqueeze(0)指添加在第一个维度

也可以通过x_train.view(60000,1,28,28)添加维度

可以看到张量由三维变为了四维

打印示例图像

引入所需的包,定义一个辅助函数,将张量显示为图像

复制代码
from torchvision import utils
import matplotlib.pyplot as plt
import numpy as np
def show(img):
    npimg = img.numpy()
    npimg_tr=np.transpose(npimg, (1,2,0))
    plt.imshow(npimg_tr,interpolation='nearest')

创建一个10*10的网格,每行10张图片,pedding=3指间隔为3

复制代码
x_grid=utils.make_grid(x_train[:100], nrow=10, padding=3)
print(x_grid.shape)
show(x_grid)

utils.make_grid实际上是将多张图片拼接起来,参照官方介绍:

相关推荐
半吊子全栈工匠6 分钟前
软件产品的10个UI设计技巧及AI 辅助
人工智能·ui
树下水月30 分钟前
python 连接hive2 数据库
开发语言·数据库·python
小白宗轩32 分钟前
vsCode的java配置
java·vscode·python
机器之心1 小时前
真机RL!最强VLA模型π*0.6来了,机器人在办公室开起咖啡厅
人工智能·openai
机器之心1 小时前
马斯克Grok 4.1低调发布!通用能力碾压其他一切模型
人工智能·openai
一水鉴天1 小时前
整体设计 全面梳理复盘 之39 生态工具链 到顶级表征及其完全公理化
大数据·人工智能·算法
xuehaisj1 小时前
如何使用yolo11-C3k2-MambaOut-UniRepLK模型实现历史文化名城Filarmoniya建筑检测识别
python
小和尚同志1 小时前
本地 AI Code Review 探索及落地
人工智能·aigc
FreeCode1 小时前
使用LangSmith评估智能体
python·langchain·agent