接上篇文章,可以发现使用CUDA提供的API进行前缀和扫描时,第一次运行的时间不如共享内存访问,猜测是使用到了全局内存。
首先看调用逻辑:
            
            
              cpp
              
              
            
          
          thrust::inclusive_scan(thrust::device, d_x, d_x + N, d_x);第一个参数指定了设备,根据实参数量和类型找到对应的函数,是scan.h中的如下函数:
            
            
              cpp
              
              
            
          
          template <typename DerivedPolicy, typename InputIterator, typename OutputIterator>
_CCCL_HOST_DEVICE OutputIterator inclusive_scan(
  const thrust::detail::execution_policy_base<DerivedPolicy>& exec,
  InputIterator first,
  InputIterator last,
  OutputIterator result);其实现位于thrust\thrust\system\cuda\detail\scan.h
注意 :路径可能与实际有偏差,可以在/usr/local/下使用find . -name xx查找对应的文件
            
            
              cpp
              
              
            
          
          template <typename Derived, typename InputIt, typename OutputIt>
_CCCL_HOST_DEVICE OutputIt
inclusive_scan(thrust::cuda_cub::execution_policy<Derived>& policy, InputIt first, InputIt last, OutputIt result)
{
  return thrust::cuda_cub::inclusive_scan(policy, first, last, result, thrust::plus<>{});
}将操作指定为plus,
然后执行同一文件下的此函数:
            
            
              cpp
              
              
            
          
          template <typename Derived, typename InputIt, typename OutputIt, typename ScanOp>
_CCCL_HOST_DEVICE OutputIt inclusive_scan(
  thrust::cuda_cub::execution_policy<Derived>& policy, InputIt first, InputIt last, OutputIt result, ScanOp scan_op)
{
  using diff_t           = typename thrust::iterator_traits<InputIt>::difference_type;
  diff_t const num_items = thrust::distance(first, last);
  return thrust::cuda_cub::inclusive_scan_n(policy, first, num_items, result, scan_op);
}最终找到主要的执行逻辑:
            
            
              cpp
              
              
            
          
          _CCCL_EXEC_CHECK_DISABLE
template <typename Derived, typename InputIt, typename Size, typename OutputIt, typename ScanOp>
_CCCL_HOST_DEVICE OutputIt inclusive_scan_n_impl(
  thrust::cuda_cub::execution_policy<Derived>& policy, InputIt first, Size num_items, OutputIt result, ScanOp scan_op)
{
  using AccumT     = typename thrust::iterator_traits<InputIt>::value_type;
  using Dispatch32 = cub::DispatchScan<InputIt, OutputIt, ScanOp, cub::NullType, std::int32_t, AccumT>;
  using Dispatch64 = cub::DispatchScan<InputIt, OutputIt, ScanOp, cub::NullType, std::int64_t, AccumT>;
  cudaStream_t stream = thrust::cuda_cub::stream(policy);
  cudaError_t status;
  // Determine temporary storage requirements:
  size_t tmp_size = 0;
  {
    THRUST_INDEX_TYPE_DISPATCH2(
      status,
      Dispatch32::Dispatch,
      Dispatch64::Dispatch,
      num_items,
      (nullptr, tmp_size, first, result, scan_op, cub::NullType{}, num_items_fixed, stream));
    thrust::cuda_cub::throw_on_error(
      status,
      "after determining tmp storage "
      "requirements for inclusive_scan");
  }
  // Run scan:
  {
    // Allocate temporary storage:
    thrust::detail::temporary_array<std::uint8_t, Derived> tmp{policy, tmp_size};
    THRUST_INDEX_TYPE_DISPATCH2(
      status,
      Dispatch32::Dispatch,
      Dispatch64::Dispatch,
      num_items,
      (tmp.data().get(), tmp_size, first, result, scan_op, cub::NullType{}, num_items_fixed, stream));
    thrust::cuda_cub::throw_on_error(status, "after dispatching inclusive_scan kernel");
    thrust::cuda_cub::throw_on_error(
      thrust::cuda_cub::synchronize_optional(policy), "inclusive_scan failed to synchronize");
  }
  return result + num_items;
}可以看到,此处thrust调用了cub的Dispatchscan操作,而cub中是使用全局内存的,因此造成了效率还不如手动编写使用共享内存的算法。