接上篇文章,可以发现使用CUDA提供的API进行前缀和扫描时,第一次运行的时间不如共享内存访问,猜测是使用到了全局内存。
首先看调用逻辑:
cpp
thrust::inclusive_scan(thrust::device, d_x, d_x + N, d_x);
第一个参数指定了设备,根据实参数量和类型找到对应的函数,是scan.h中的如下函数:
cpp
template <typename DerivedPolicy, typename InputIterator, typename OutputIterator>
_CCCL_HOST_DEVICE OutputIterator inclusive_scan(
const thrust::detail::execution_policy_base<DerivedPolicy>& exec,
InputIterator first,
InputIterator last,
OutputIterator result);
其实现位于thrust\thrust\system\cuda\detail\scan.h
注意 :路径可能与实际有偏差,可以在/usr/local/下使用find . -name xx
查找对应的文件
cpp
template <typename Derived, typename InputIt, typename OutputIt>
_CCCL_HOST_DEVICE OutputIt
inclusive_scan(thrust::cuda_cub::execution_policy<Derived>& policy, InputIt first, InputIt last, OutputIt result)
{
return thrust::cuda_cub::inclusive_scan(policy, first, last, result, thrust::plus<>{});
}
将操作指定为plus,
然后执行同一文件下的此函数:
cpp
template <typename Derived, typename InputIt, typename OutputIt, typename ScanOp>
_CCCL_HOST_DEVICE OutputIt inclusive_scan(
thrust::cuda_cub::execution_policy<Derived>& policy, InputIt first, InputIt last, OutputIt result, ScanOp scan_op)
{
using diff_t = typename thrust::iterator_traits<InputIt>::difference_type;
diff_t const num_items = thrust::distance(first, last);
return thrust::cuda_cub::inclusive_scan_n(policy, first, num_items, result, scan_op);
}
最终找到主要的执行逻辑:
cpp
_CCCL_EXEC_CHECK_DISABLE
template <typename Derived, typename InputIt, typename Size, typename OutputIt, typename ScanOp>
_CCCL_HOST_DEVICE OutputIt inclusive_scan_n_impl(
thrust::cuda_cub::execution_policy<Derived>& policy, InputIt first, Size num_items, OutputIt result, ScanOp scan_op)
{
using AccumT = typename thrust::iterator_traits<InputIt>::value_type;
using Dispatch32 = cub::DispatchScan<InputIt, OutputIt, ScanOp, cub::NullType, std::int32_t, AccumT>;
using Dispatch64 = cub::DispatchScan<InputIt, OutputIt, ScanOp, cub::NullType, std::int64_t, AccumT>;
cudaStream_t stream = thrust::cuda_cub::stream(policy);
cudaError_t status;
// Determine temporary storage requirements:
size_t tmp_size = 0;
{
THRUST_INDEX_TYPE_DISPATCH2(
status,
Dispatch32::Dispatch,
Dispatch64::Dispatch,
num_items,
(nullptr, tmp_size, first, result, scan_op, cub::NullType{}, num_items_fixed, stream));
thrust::cuda_cub::throw_on_error(
status,
"after determining tmp storage "
"requirements for inclusive_scan");
}
// Run scan:
{
// Allocate temporary storage:
thrust::detail::temporary_array<std::uint8_t, Derived> tmp{policy, tmp_size};
THRUST_INDEX_TYPE_DISPATCH2(
status,
Dispatch32::Dispatch,
Dispatch64::Dispatch,
num_items,
(tmp.data().get(), tmp_size, first, result, scan_op, cub::NullType{}, num_items_fixed, stream));
thrust::cuda_cub::throw_on_error(status, "after dispatching inclusive_scan kernel");
thrust::cuda_cub::throw_on_error(
thrust::cuda_cub::synchronize_optional(policy), "inclusive_scan failed to synchronize");
}
return result + num_items;
}
可以看到,此处thrust调用了cub的Dispatchscan操作,而cub中是使用全局内存的,因此造成了效率还不如手动编写使用共享内存的算法。