early-stopping pytorch refs

1)https://github.com/Bjarten/early-stopping-pytorch/blob/master/MNIST_Early_Stopping_example.ipynb

2)https://machinelearningmastery.com/managing-a-pytorch-training-process-with-checkpoints-and-early-stopping/

3)https://pytorch.org/ignite/generated/ignite.handlers.early_stopping.EarlyStopping.html

4)https://medium.com/@vrunda.bhattbhatt/a-step-by-step-guide-to-early-stopping-in-tensorflow-and-pytorch-59c1e3d0e376

5)https://stackoverflow.com/questions/71998978/early-stopping-in-pytorch

复制代码
https://medium.com/@vrunda.bhattbhatt/a-step-by-step-guide-to-early-stopping-in-tensorflow-and-pytorch-59c1e3d0e376Step-by-Step Guide in PyTorch
1.Import libraries
import torch
import numpy as np
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Upsample, Concatenate
from torch.optim import Adam
import copy
2. Define the U-Net Architecture

class UNet(nn.Module):
    def __init__(self, input_channels, output_channels):
        super(UNet, self).__init__()

        # Contracting path
        self.conv1 = Conv2d(input_channels, 64, 3, padding=1)
        self.conv2 = Conv2d(64, 64, 3, padding=1)
        self.pool = MaxPool2d(2, 2)
        self.conv3 = Conv2d(64, 128, 3, padding=1)
        self.conv4 = Conv2d(128, 128, 3, padding=1)
        self.conv5 = Conv2d(128, 256, 3, padding=1)
        self.conv6 = Conv2d(256, 256, 3, padding=1)

        # Expanding path
        self.up7 = Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.conv7 = Conv2d(256, 128, 3, padding=1)
        self.conv8 = Conv2d(128, 128, 3, padding=1)
        self.up8 = Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.conv9 = Conv2d(128, 64, 3, padding=1)
        self.conv10 = Conv2d(64, 64, 3, padding=1)

        # Output layer
        self.conv11 = nn.Conv2d(64, output_channels, 1)

    def forward(self, x):
        # Contracting path
        x1 = self.conv1(x)
        x1 = nn.functional.relu(x1)
        x1 = self.conv2(x1)
        x1 = nn.functional.relu(x1)
        x1 = self.pool(x1)
        x2 = self.conv3(x1)
        x2 = nn.functional.relu(x2)
        x2 = self.conv4(x2)
        x2 = nn.functional.relu(x2)
        x2 = self.pool(x2)
        x3 = self.conv5(x2)
        x3 = nn.functional.relu(x3)
        x3 = self.conv6(x3)
        x3 = nn.functional.relu(x3)

        # Expanding path
        x4 = self.up7(x3)
        x4 = torch.cat([x4, x2], dim=1)  # Skip connection
        x4 = self.conv7(x4)
        x4 = nn.functional.relu(x4)
        x4 = self.conv8(x4)
        x4 = nn.functional.relu(x4)
        x5 = self.up8(x4)
        x5 = torch.cat([x5, x1], dim=1)  # Skip connection
        x5 = self.conv9(x5)
        x5 = nn.functional.relu(x5)
        x5 = self.conv10(x5)
        x5 = nn.functional.relu(x5)

        # Output layer
        output = self.conv11(x5)
        return output
3. Load your data

X_train = torch.from_numpy(np.load('your_training_images.npy'))
y_train = torch.from_numpy(np.load('your_training_segmentations.npy'))
X_val = torch.from_numpy(np.load('your_validation_images
4. Define HyperParameters

input_channels = X_train.shape[1]  # Adjust based on your image channels
output_channels = 1  # For binary segmentation
5. Create UNet model

model = UNet(input_channels, output_channels)
6. Initialize Optimizer and Loss Functions

optimizer = Adam(model.parameters())
criterion = nn.BCELoss()
7. Training loop with early stopping

#Initialize Variables for EarlyStopping
best_loss = float('inf')
best_model_weights = None
patience = 10

# Training Loop with Early Stopping:**
for epoch in range(100):
    # Set model to training mode
    model.train()

    # Forward pass and loss calculation
    outputs = model(X_train)
    loss = criterion(outputs, y_train.float())  # Convert y_train to float for BCELoss

    # Backward pass and optimization
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Validation
    model.eval()  # Set model to evaluation mode
    with torch.no_grad():  # Disable gradient calculation for validation
        val_outputs = model(X_val)
        val_loss = criterion(val_outputs, y_val.float())

    # Early stopping
    if val_loss < best_loss:
        best_loss = val_loss
        best_model_weights = copy.deepcopy(model.state_dict())  # Deep copy here      
        patience = 10  # Reset patience counter
    else:
        patience -= 1
        if patience == 0:
            break

# Load the best model weights
model.load_state_dict(best_model_weights)
8. Inference

# Set model to evaluation mode
model.eval()

# Perform inference on new images
with torch.no_grad():
    new_images = torch.from_numpy(np.load('your_new_images.npy'))
    predictions = model(new_images)

# Process and visualize predictions as needed```
相关推荐
黑心萝卜三条杠9 分钟前
解码微生物适应性的关键:基因组序列与栖息地预测的深度关联
人工智能
黑心萝卜三条杠32 分钟前
Everywhere Attack:通过多目标植入提升对抗样本的目标迁移性
人工智能
程序员三藏41 分钟前
如何使用Jmeter进行压力测试?
自动化测试·软件测试·python·测试工具·jmeter·测试用例·压力测试
carpell44 分钟前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割
24K纯学渣1 小时前
Python编码格式化之PEP8编码规范
开发语言·ide·python·pycharm
怒视天下1 小时前
零基础玩转Python生物信息学:数据分析与算法实现
开发语言·python
ahead~1 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
zhanshuo1 小时前
Python元组黑科技:3招让数据安全暴增200%,学生管理系统实战揭秘!
python
空中湖1 小时前
免费批量图片格式转换工具
图像处理·python·程序人生
迪娜学姐1 小时前
GenSpark vs Manus实测对比:文献综述与学术PPT,哪家强?
论文阅读·人工智能·prompt·powerpoint·论文笔记