early-stopping pytorch refs

1)https://github.com/Bjarten/early-stopping-pytorch/blob/master/MNIST_Early_Stopping_example.ipynb

2)https://machinelearningmastery.com/managing-a-pytorch-training-process-with-checkpoints-and-early-stopping/

3)https://pytorch.org/ignite/generated/ignite.handlers.early_stopping.EarlyStopping.html

4)https://medium.com/@vrunda.bhattbhatt/a-step-by-step-guide-to-early-stopping-in-tensorflow-and-pytorch-59c1e3d0e376

5)https://stackoverflow.com/questions/71998978/early-stopping-in-pytorch

复制代码
https://medium.com/@vrunda.bhattbhatt/a-step-by-step-guide-to-early-stopping-in-tensorflow-and-pytorch-59c1e3d0e376Step-by-Step Guide in PyTorch
1.Import libraries
import torch
import numpy as np
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Upsample, Concatenate
from torch.optim import Adam
import copy
2. Define the U-Net Architecture

class UNet(nn.Module):
    def __init__(self, input_channels, output_channels):
        super(UNet, self).__init__()

        # Contracting path
        self.conv1 = Conv2d(input_channels, 64, 3, padding=1)
        self.conv2 = Conv2d(64, 64, 3, padding=1)
        self.pool = MaxPool2d(2, 2)
        self.conv3 = Conv2d(64, 128, 3, padding=1)
        self.conv4 = Conv2d(128, 128, 3, padding=1)
        self.conv5 = Conv2d(128, 256, 3, padding=1)
        self.conv6 = Conv2d(256, 256, 3, padding=1)

        # Expanding path
        self.up7 = Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.conv7 = Conv2d(256, 128, 3, padding=1)
        self.conv8 = Conv2d(128, 128, 3, padding=1)
        self.up8 = Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.conv9 = Conv2d(128, 64, 3, padding=1)
        self.conv10 = Conv2d(64, 64, 3, padding=1)

        # Output layer
        self.conv11 = nn.Conv2d(64, output_channels, 1)

    def forward(self, x):
        # Contracting path
        x1 = self.conv1(x)
        x1 = nn.functional.relu(x1)
        x1 = self.conv2(x1)
        x1 = nn.functional.relu(x1)
        x1 = self.pool(x1)
        x2 = self.conv3(x1)
        x2 = nn.functional.relu(x2)
        x2 = self.conv4(x2)
        x2 = nn.functional.relu(x2)
        x2 = self.pool(x2)
        x3 = self.conv5(x2)
        x3 = nn.functional.relu(x3)
        x3 = self.conv6(x3)
        x3 = nn.functional.relu(x3)

        # Expanding path
        x4 = self.up7(x3)
        x4 = torch.cat([x4, x2], dim=1)  # Skip connection
        x4 = self.conv7(x4)
        x4 = nn.functional.relu(x4)
        x4 = self.conv8(x4)
        x4 = nn.functional.relu(x4)
        x5 = self.up8(x4)
        x5 = torch.cat([x5, x1], dim=1)  # Skip connection
        x5 = self.conv9(x5)
        x5 = nn.functional.relu(x5)
        x5 = self.conv10(x5)
        x5 = nn.functional.relu(x5)

        # Output layer
        output = self.conv11(x5)
        return output
3. Load your data

X_train = torch.from_numpy(np.load('your_training_images.npy'))
y_train = torch.from_numpy(np.load('your_training_segmentations.npy'))
X_val = torch.from_numpy(np.load('your_validation_images
4. Define HyperParameters

input_channels = X_train.shape[1]  # Adjust based on your image channels
output_channels = 1  # For binary segmentation
5. Create UNet model

model = UNet(input_channels, output_channels)
6. Initialize Optimizer and Loss Functions

optimizer = Adam(model.parameters())
criterion = nn.BCELoss()
7. Training loop with early stopping

#Initialize Variables for EarlyStopping
best_loss = float('inf')
best_model_weights = None
patience = 10

# Training Loop with Early Stopping:**
for epoch in range(100):
    # Set model to training mode
    model.train()

    # Forward pass and loss calculation
    outputs = model(X_train)
    loss = criterion(outputs, y_train.float())  # Convert y_train to float for BCELoss

    # Backward pass and optimization
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Validation
    model.eval()  # Set model to evaluation mode
    with torch.no_grad():  # Disable gradient calculation for validation
        val_outputs = model(X_val)
        val_loss = criterion(val_outputs, y_val.float())

    # Early stopping
    if val_loss < best_loss:
        best_loss = val_loss
        best_model_weights = copy.deepcopy(model.state_dict())  # Deep copy here      
        patience = 10  # Reset patience counter
    else:
        patience -= 1
        if patience == 0:
            break

# Load the best model weights
model.load_state_dict(best_model_weights)
8. Inference

# Set model to evaluation mode
model.eval()

# Perform inference on new images
with torch.no_grad():
    new_images = torch.from_numpy(np.load('your_new_images.npy'))
    predictions = model(new_images)

# Process and visualize predictions as needed```
相关推荐
rocksun几秒前
Agentic AI和平台工程:如何结合
人工智能·devops
孔令飞11 分钟前
关于 LLMOPS 的一些粗浅思考
人工智能·云原生·go
创新技术阁15 分钟前
FastAPI 的两大核心组件:Starlette 和 Pydantic 详解
后端·python
关山月16 分钟前
被低估的服务器发送事件(SSE)
python
Lecea_L17 分钟前
你能在K步内赚最多的钱吗?用Java解锁最大路径收益算法(含AI场景分析)
java·人工智能·算法
2501_9071368221 分钟前
OfficeAI构建本地办公生态:WPS/Word双端联动,数据自由流转
人工智能·word·wps
飞哥数智坊25 分钟前
从零构建自己的MCP Server
人工智能
是Dream呀27 分钟前
ResNeXt: 通过聚合残差变换增强深度神经网络
人工智能·算法
DeepLink34 分钟前
Python小练习系列:学生信息排序(sorted + key函数)
python·求职
项目申报小狂人38 分钟前
CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装
人工智能·pytorch·python