early-stopping pytorch refs

1)https://github.com/Bjarten/early-stopping-pytorch/blob/master/MNIST_Early_Stopping_example.ipynb

2)https://machinelearningmastery.com/managing-a-pytorch-training-process-with-checkpoints-and-early-stopping/

3)https://pytorch.org/ignite/generated/ignite.handlers.early_stopping.EarlyStopping.html

4)https://medium.com/@vrunda.bhattbhatt/a-step-by-step-guide-to-early-stopping-in-tensorflow-and-pytorch-59c1e3d0e376

5)https://stackoverflow.com/questions/71998978/early-stopping-in-pytorch

复制代码
https://medium.com/@vrunda.bhattbhatt/a-step-by-step-guide-to-early-stopping-in-tensorflow-and-pytorch-59c1e3d0e376Step-by-Step Guide in PyTorch
1.Import libraries
import torch
import numpy as np
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Upsample, Concatenate
from torch.optim import Adam
import copy
2. Define the U-Net Architecture

class UNet(nn.Module):
    def __init__(self, input_channels, output_channels):
        super(UNet, self).__init__()

        # Contracting path
        self.conv1 = Conv2d(input_channels, 64, 3, padding=1)
        self.conv2 = Conv2d(64, 64, 3, padding=1)
        self.pool = MaxPool2d(2, 2)
        self.conv3 = Conv2d(64, 128, 3, padding=1)
        self.conv4 = Conv2d(128, 128, 3, padding=1)
        self.conv5 = Conv2d(128, 256, 3, padding=1)
        self.conv6 = Conv2d(256, 256, 3, padding=1)

        # Expanding path
        self.up7 = Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.conv7 = Conv2d(256, 128, 3, padding=1)
        self.conv8 = Conv2d(128, 128, 3, padding=1)
        self.up8 = Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.conv9 = Conv2d(128, 64, 3, padding=1)
        self.conv10 = Conv2d(64, 64, 3, padding=1)

        # Output layer
        self.conv11 = nn.Conv2d(64, output_channels, 1)

    def forward(self, x):
        # Contracting path
        x1 = self.conv1(x)
        x1 = nn.functional.relu(x1)
        x1 = self.conv2(x1)
        x1 = nn.functional.relu(x1)
        x1 = self.pool(x1)
        x2 = self.conv3(x1)
        x2 = nn.functional.relu(x2)
        x2 = self.conv4(x2)
        x2 = nn.functional.relu(x2)
        x2 = self.pool(x2)
        x3 = self.conv5(x2)
        x3 = nn.functional.relu(x3)
        x3 = self.conv6(x3)
        x3 = nn.functional.relu(x3)

        # Expanding path
        x4 = self.up7(x3)
        x4 = torch.cat([x4, x2], dim=1)  # Skip connection
        x4 = self.conv7(x4)
        x4 = nn.functional.relu(x4)
        x4 = self.conv8(x4)
        x4 = nn.functional.relu(x4)
        x5 = self.up8(x4)
        x5 = torch.cat([x5, x1], dim=1)  # Skip connection
        x5 = self.conv9(x5)
        x5 = nn.functional.relu(x5)
        x5 = self.conv10(x5)
        x5 = nn.functional.relu(x5)

        # Output layer
        output = self.conv11(x5)
        return output
3. Load your data

X_train = torch.from_numpy(np.load('your_training_images.npy'))
y_train = torch.from_numpy(np.load('your_training_segmentations.npy'))
X_val = torch.from_numpy(np.load('your_validation_images
4. Define HyperParameters

input_channels = X_train.shape[1]  # Adjust based on your image channels
output_channels = 1  # For binary segmentation
5. Create UNet model

model = UNet(input_channels, output_channels)
6. Initialize Optimizer and Loss Functions

optimizer = Adam(model.parameters())
criterion = nn.BCELoss()
7. Training loop with early stopping

#Initialize Variables for EarlyStopping
best_loss = float('inf')
best_model_weights = None
patience = 10

# Training Loop with Early Stopping:**
for epoch in range(100):
    # Set model to training mode
    model.train()

    # Forward pass and loss calculation
    outputs = model(X_train)
    loss = criterion(outputs, y_train.float())  # Convert y_train to float for BCELoss

    # Backward pass and optimization
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Validation
    model.eval()  # Set model to evaluation mode
    with torch.no_grad():  # Disable gradient calculation for validation
        val_outputs = model(X_val)
        val_loss = criterion(val_outputs, y_val.float())

    # Early stopping
    if val_loss < best_loss:
        best_loss = val_loss
        best_model_weights = copy.deepcopy(model.state_dict())  # Deep copy here      
        patience = 10  # Reset patience counter
    else:
        patience -= 1
        if patience == 0:
            break

# Load the best model weights
model.load_state_dict(best_model_weights)
8. Inference

# Set model to evaluation mode
model.eval()

# Perform inference on new images
with torch.no_grad():
    new_images = torch.from_numpy(np.load('your_new_images.npy'))
    predictions = model(new_images)

# Process and visualize predictions as needed```
相关推荐
Drgfd11 分钟前
真智能 vs 伪智能:天选 WE H7 Lite 用 AI 人脸识别 + 呼吸灯带,重新定义智能化充电桩
人工智能·智能充电桩·家用充电桩·充电桩推荐
DeniuHe15 分钟前
torch.distribution函数详解
pytorch
好家伙VCC25 分钟前
### WebRTC技术:实时通信的革新与实现####webRTC(Web Real-TimeComm
java·前端·python·webrtc
萤丰信息34 分钟前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
盖雅工场39 分钟前
排班+成本双管控,餐饮零售精细化运营破局
人工智能·零售餐饮·ai智能排班
神策数据1 小时前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售
2501_941333101 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
逐梦苍穹1 小时前
速通DeepSeek论文mHC:给大模型装上物理阀门的架构革命
人工智能·deepseek·mhc
运维小欣1 小时前
Agentic AI 与 Agentic Ops 驱动,智能运维迈向新高度
运维·人工智能
前端玖耀里1 小时前
如何使用python的boto库和SES发送电子邮件?
python