AIGC笔记--基于Stable Diffusion实现图片的inpainting

1--完整代码

SD_Inpainting

2--简单代码

python 复制代码
import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torchvision
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer

# 预处理mask
def preprocess_mask(mask):
    mask = mask.convert("L") # 转换为灰度图: L = R * 299/1000 + G * 587/1000+ B * 114/1000。
    w, h = mask.size # 512, 512
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    mask = mask.resize((w // 8, h // 8), resample = PIL.Image.NEAREST) # 64, 64
    mask = np.array(mask).astype(np.float32) / 255.0 # 归一化 64, 64
    mask = np.tile(mask, (4, 1, 1)) # 4, 64, 64
    mask = mask[None].transpose(0, 1, 2, 3)
    mask = 1 - mask  # repaint white, keep black # mask图中,mask的部分变为0
    mask = torch.from_numpy(mask)
    return mask

# 预处理image
def preprocess(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0

if __name__ == "__main__":
    model_id = "runwayml/stable-diffusion-v1-5" # online download
    # model_id = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/All_test/test0714/huggingface.co/runwayml/stable-diffusion-v1-5" # local path

    # 读取输入图像和输入mask
    input_image = Image.open("./images/overture-creations-5sI6fQgYIuo.png").resize((512, 512))
    input_mask = Image.open("./images/overture-creations-5sI6fQgYIuo_mask.png").resize((512, 512))

    # 1. 加载autoencoder
    vae = AutoencoderKL.from_pretrained(model_id, subfolder = "vae")

    # 2. 加载tokenizer和text encoder 
    tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder = "tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder = "text_encoder")

    # 3. 加载扩散模型UNet
    unet = UNet2DConditionModel.from_pretrained(model_id, subfolder = "unet")

    # 4. 定义noise scheduler
    noise_scheduler = DDIMScheduler(
        num_train_timesteps = 1000,
        beta_start = 0.00085,
        beta_end = 0.012,
        beta_schedule = "scaled_linear",
        clip_sample = False, # don't clip sample, the x0 in stable diffusion not in range [-1, 1]
        set_alpha_to_one = False,
    )

    # 将模型复制到GPU上
    device = "cuda"
    vae.to(device, dtype = torch.float16)
    text_encoder.to(device, dtype = torch.float16)
    unet = unet.to(device, dtype = torch.float16)

    # 设置prompt和超参数
    prompt = "a mecha robot sitting on a bench"
    negative_prompt = ""
    strength = 0.75
    guidance_scale = 7.5
    batch_size = 1
    num_inference_steps = 50
    generator = torch.Generator(device).manual_seed(0)

    with torch.no_grad():
        # get prompt text_embeddings
        text_input = tokenizer(prompt, padding = "max_length", 
            max_length = tokenizer.model_max_length, 
            truncation = True, 
            return_tensors = "pt")
        text_embeddings = text_encoder(text_input.input_ids.to(device))[0]

        # get unconditional text embeddings
        max_length = text_input.input_ids.shape[-1]
        uncond_input = tokenizer(
            [negative_prompt] * batch_size, padding = "max_length", max_length = max_length, return_tensors = "pt"
        )
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
        # concat batch
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        # 设置采样步数
        noise_scheduler.set_timesteps(num_inference_steps, device = device)

        # 根据strength计算timesteps
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = noise_scheduler.timesteps[t_start:]

        # 预处理init_image
        init_input = preprocess(input_image)
        init_latents = vae.encode(init_input.to(device, dtype=torch.float16)).latent_dist.sample(generator)
        init_latents = 0.18215 * init_latents
        init_latents = torch.cat([init_latents] * batch_size, dim=0)
        init_latents_orig = init_latents

        # 处理mask
        mask_image = preprocess_mask(input_mask)
        mask_image = mask_image.to(device=device, dtype=init_latents.dtype)
        mask = torch.cat([mask_image] * batch_size)
        
        # 给init_latents加噪音
        noise = torch.randn(init_latents.shape, generator = generator, device = device, dtype = init_latents.dtype)
        init_latents = noise_scheduler.add_noise(init_latents, noise, timesteps[:1])
        latents = init_latents # 作为初始latents

        # Do denoise steps
        for t in tqdm(timesteps):
            # 这里latens扩展2份,是为了同时计算unconditional prediction
            latent_model_input = torch.cat([latents] * 2)
            latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t) # for DDIM, do nothing

            # 预测噪音
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

            # Classifier Free Guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # x_t -> x_t-1
            latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
            
            # 将unmask区域替换原始图像的nosiy latents
            init_latents_proper = noise_scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
            # mask的部分数值为0
            # 因此init_latents_proper * mask为保留原始latents(不mask)
            # 而latents * (1 - mask)为用生成的latents替换mask的部分
            latents = (init_latents_proper * mask) + (latents * (1 - mask)) 

        # 注意要对latents进行scale
        latents = 1 / 0.18215 * latents
        image = vae.decode(latents).sample
        
        # 转成pillow
        img = (image / 2 + 0.5).clamp(0, 1).detach().cpu()
        img = torchvision.transforms.ToPILImage()(img.squeeze())
        img.save("./outputs/output.png")
        print("All Done!")

运行结果:

3--基于Diffuser进行调用

python 复制代码
import torch
import torchvision
from PIL import Image
from diffusers import StableDiffusionInpaintPipelineLegacy

if __name__ == "__main__":
    # load inpainting pipeline
    model_id = "runwayml/stable-diffusion-v1-5"
    # model_id = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/All_test/test0714/huggingface.co/runwayml/stable-diffusion-v1-5" # local path
    pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(model_id, torch_dtype = torch.float16).to("cuda")

    # load input image and input mask
    input_image = Image.open("./images/overture-creations-5sI6fQgYIuo.png").resize((512, 512))
    input_mask = Image.open("./images/overture-creations-5sI6fQgYIuo_mask.png").resize((512, 512))

    # run inference
    prompt = ["a mecha robot sitting on a bench", "a cat sitting on a bench"]
    generator = torch.Generator("cuda").manual_seed(0)
    with torch.autocast("cuda"):
        images = pipe(
            prompt = prompt,
            image = input_image,
            mask_image = input_mask,
            num_inference_steps = 50,
            strength = 0.75,
            guidance_scale = 7.5,
            num_images_per_prompt = 1,
            generator = generator
        ).images

    # 转成pillow
    for idx, image in enumerate(images):
        image.save("./outputs/output_{:d}.png".format(idx))
    print("All Done!")

运行结果:

相关推荐
晨航6 小时前
AI Agent拐点已至,2B+2C星辰大海——行业深度报告
人工智能·ai·aigc
姚瑞南7 小时前
从模糊感知到量化评估:构建一个Prompt打分工具
人工智能·自然语言处理·chatgpt·prompt·aigc
我是阳明7 小时前
开发一个基于 SSE 类型的 Claude MCP 智能商城助手
aigc·cursor·mcp
SelectDB7 小时前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·aigc
r0ad7 小时前
文生图架构设计原来如此简单之交互流程优化
架构·aigc
几米哥15 小时前
OpenManus进阶指南:如何配置DeepSeek模型和百度搜索提升中文体验
开源·aigc·deepseek
墨风如雪15 小时前
DeepSite 深度解析:零门槛 AI 编程神器,免费打造你的专属应用与游戏
aigc
AIGC-Lison15 小时前
【CSDN首发】Stable Diffusion从零到精通学习路线分享
人工智能·ai·stable diffusion·aigc·sd
AI绘画咪酱15 小时前
Stable Diffusion|Ai赋能电商 Inpaint Anything
人工智能·ai·ai作画·stable diffusion·sd·ai教程·sd教程
bug404_1 天前
jetson orin nano super AI模型部署之路(三)stable diffusion部署
人工智能·stable diffusion