AIGC笔记--基于Stable Diffusion实现图片的inpainting

1--完整代码

SD_Inpainting

2--简单代码

python 复制代码
import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torchvision
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer

# 预处理mask
def preprocess_mask(mask):
    mask = mask.convert("L") # 转换为灰度图: L = R * 299/1000 + G * 587/1000+ B * 114/1000。
    w, h = mask.size # 512, 512
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    mask = mask.resize((w // 8, h // 8), resample = PIL.Image.NEAREST) # 64, 64
    mask = np.array(mask).astype(np.float32) / 255.0 # 归一化 64, 64
    mask = np.tile(mask, (4, 1, 1)) # 4, 64, 64
    mask = mask[None].transpose(0, 1, 2, 3)
    mask = 1 - mask  # repaint white, keep black # mask图中,mask的部分变为0
    mask = torch.from_numpy(mask)
    return mask

# 预处理image
def preprocess(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0

if __name__ == "__main__":
    model_id = "runwayml/stable-diffusion-v1-5" # online download
    # model_id = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/All_test/test0714/huggingface.co/runwayml/stable-diffusion-v1-5" # local path

    # 读取输入图像和输入mask
    input_image = Image.open("./images/overture-creations-5sI6fQgYIuo.png").resize((512, 512))
    input_mask = Image.open("./images/overture-creations-5sI6fQgYIuo_mask.png").resize((512, 512))

    # 1. 加载autoencoder
    vae = AutoencoderKL.from_pretrained(model_id, subfolder = "vae")

    # 2. 加载tokenizer和text encoder 
    tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder = "tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder = "text_encoder")

    # 3. 加载扩散模型UNet
    unet = UNet2DConditionModel.from_pretrained(model_id, subfolder = "unet")

    # 4. 定义noise scheduler
    noise_scheduler = DDIMScheduler(
        num_train_timesteps = 1000,
        beta_start = 0.00085,
        beta_end = 0.012,
        beta_schedule = "scaled_linear",
        clip_sample = False, # don't clip sample, the x0 in stable diffusion not in range [-1, 1]
        set_alpha_to_one = False,
    )

    # 将模型复制到GPU上
    device = "cuda"
    vae.to(device, dtype = torch.float16)
    text_encoder.to(device, dtype = torch.float16)
    unet = unet.to(device, dtype = torch.float16)

    # 设置prompt和超参数
    prompt = "a mecha robot sitting on a bench"
    negative_prompt = ""
    strength = 0.75
    guidance_scale = 7.5
    batch_size = 1
    num_inference_steps = 50
    generator = torch.Generator(device).manual_seed(0)

    with torch.no_grad():
        # get prompt text_embeddings
        text_input = tokenizer(prompt, padding = "max_length", 
            max_length = tokenizer.model_max_length, 
            truncation = True, 
            return_tensors = "pt")
        text_embeddings = text_encoder(text_input.input_ids.to(device))[0]

        # get unconditional text embeddings
        max_length = text_input.input_ids.shape[-1]
        uncond_input = tokenizer(
            [negative_prompt] * batch_size, padding = "max_length", max_length = max_length, return_tensors = "pt"
        )
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
        # concat batch
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        # 设置采样步数
        noise_scheduler.set_timesteps(num_inference_steps, device = device)

        # 根据strength计算timesteps
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = noise_scheduler.timesteps[t_start:]

        # 预处理init_image
        init_input = preprocess(input_image)
        init_latents = vae.encode(init_input.to(device, dtype=torch.float16)).latent_dist.sample(generator)
        init_latents = 0.18215 * init_latents
        init_latents = torch.cat([init_latents] * batch_size, dim=0)
        init_latents_orig = init_latents

        # 处理mask
        mask_image = preprocess_mask(input_mask)
        mask_image = mask_image.to(device=device, dtype=init_latents.dtype)
        mask = torch.cat([mask_image] * batch_size)
        
        # 给init_latents加噪音
        noise = torch.randn(init_latents.shape, generator = generator, device = device, dtype = init_latents.dtype)
        init_latents = noise_scheduler.add_noise(init_latents, noise, timesteps[:1])
        latents = init_latents # 作为初始latents

        # Do denoise steps
        for t in tqdm(timesteps):
            # 这里latens扩展2份,是为了同时计算unconditional prediction
            latent_model_input = torch.cat([latents] * 2)
            latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t) # for DDIM, do nothing

            # 预测噪音
            noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

            # Classifier Free Guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # x_t -> x_t-1
            latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
            
            # 将unmask区域替换原始图像的nosiy latents
            init_latents_proper = noise_scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
            # mask的部分数值为0
            # 因此init_latents_proper * mask为保留原始latents(不mask)
            # 而latents * (1 - mask)为用生成的latents替换mask的部分
            latents = (init_latents_proper * mask) + (latents * (1 - mask)) 

        # 注意要对latents进行scale
        latents = 1 / 0.18215 * latents
        image = vae.decode(latents).sample
        
        # 转成pillow
        img = (image / 2 + 0.5).clamp(0, 1).detach().cpu()
        img = torchvision.transforms.ToPILImage()(img.squeeze())
        img.save("./outputs/output.png")
        print("All Done!")

运行结果:

3--基于Diffuser进行调用

python 复制代码
import torch
import torchvision
from PIL import Image
from diffusers import StableDiffusionInpaintPipelineLegacy

if __name__ == "__main__":
    # load inpainting pipeline
    model_id = "runwayml/stable-diffusion-v1-5"
    # model_id = "/mnt/dolphinfs/hdd_pool/docker/user/hadoop-waimai-aigc/liujinfu/All_test/test0714/huggingface.co/runwayml/stable-diffusion-v1-5" # local path
    pipe = StableDiffusionInpaintPipelineLegacy.from_pretrained(model_id, torch_dtype = torch.float16).to("cuda")

    # load input image and input mask
    input_image = Image.open("./images/overture-creations-5sI6fQgYIuo.png").resize((512, 512))
    input_mask = Image.open("./images/overture-creations-5sI6fQgYIuo_mask.png").resize((512, 512))

    # run inference
    prompt = ["a mecha robot sitting on a bench", "a cat sitting on a bench"]
    generator = torch.Generator("cuda").manual_seed(0)
    with torch.autocast("cuda"):
        images = pipe(
            prompt = prompt,
            image = input_image,
            mask_image = input_mask,
            num_inference_steps = 50,
            strength = 0.75,
            guidance_scale = 7.5,
            num_images_per_prompt = 1,
            generator = generator
        ).images

    # 转成pillow
    for idx, image in enumerate(images):
        image.save("./outputs/output_{:d}.png".format(idx))
    print("All Done!")

运行结果:

相关推荐
猫头虎10 小时前
昆仑芯 X HAMi X 百度智能云 | 昆仑芯 P800 XPU/vXPU 双模式算力调度方案落地
人工智能·百度·开源·aigc·文心一言·gpu算力·agi
极客密码13 小时前
充了20刀 Cursor Pro 的朋友看到我的方案沉默了...
aigc·ai编程·cursor
后端小肥肠17 小时前
10W+育儿漫画是怎么做的?我用n8n搭建了自动化工作流,3分钟生成到本地磁盘
人工智能·aigc·agent
司马阅-SmartRead18 小时前
司马阅与铨亿科技达成生态战略合作,AI赋能工业领域智能化转型
人工智能·aigc
Mintopia1 天前
🤖 通用人工智能(AGI)离 Web 应用还有多远?
前端·javascript·aigc
墨风如雪1 天前
360 FG-CLIP2:让AI拥有“火眼金睛”,刷新全球图文理解上限
aigc
用户5191495848452 天前
原型污染攻击工具揭秘:Prototype Pollution Gadgets Finder
人工智能·aigc
安思派Anspire2 天前
构建一个自主深度思考的RAG管道以解决复杂查询--通过网络搜索扩充知识(6)
aigc·openai·agent
Coovally AI模型快速验证2 天前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
人工智能·深度学习·目标检测·计算机视觉·stable diffusion
ZEGO即构开发者2 天前
【ZEGO即构开发者日报】Soul AI Lab开源播客语音合成模型;腾讯混元推出国内首个交互式AI播客;ChatGPT Go向用户免费开放一年......
人工智能·aigc·语音识别·实时音视频