大模型/NLP/算法面试题总结9——从普通注意力换成多头注意力会导致参数暴涨吗?

从普通注意力换成多头注意力(Multi-Head Attention),通常不会导致参数总量暴涨。相反,在某些实现和配置下,参数量的增加可能相对可控,甚至在某些情况下,通过优化可以实现参数量的有效控制。

参数量分析

  1. 基本构成
    • 普通注意力:通常包括一组用于计算查询(Q)、键(K)和值(V)的线性变换矩阵,以及一个用于输出变换的矩阵。
    • 多头注意力 :则是将输入的特征拆分成多个"头"(Head),每个头独立地计算自己的查询、键和值,并通过各自的注意力机制得到输出。最后,所有头的输出被拼接起来,并经过一个额外的线性变换得到最终输出。
  2. 参数量变化
    • 在多头注意力中,每个头都有自己的查询、键和值变换矩阵(W_q, W_k, W_v),以及一个用于最终输出的线性变换矩阵(W_o)。然而,重要的是要注意到,虽然头的数量增加了,但每个头所使用的参数数量(即每个线性变换矩阵的维度)通常会被相应地调整,以保持总体参数量的可控性。
    • 例如,如果原始的单头注意力中的查询、键和值变换矩阵的维度是d_model,那么在多头注意力中,如果头的数量是h,每个头的查询、键和值变换矩阵的维度可能会调整为d_model/h(或者是一个接近的数值,具体取决于是否需要保持总体维度的一致性)。同时,最终输出的线性变换矩阵W_o的维度也会根据需要进行调整。
  3. 并行计算的优势
    • 多头注意力机制的一个主要优势是它能够并行地处理多个头,这有助于加速计算过程。虽然从表面上看,增加了头的数量似乎会增加计算复杂度,但实际上由于并行性的提高,整体计算效率可以得到提升。

结论

因此,从普通注意力换成多头注意力时,虽然确实会引入更多的参数(主要是每个头自己的查询、键和值变换矩阵),但参数量的增加并不一定是暴涨的。通过合理地调整每个头的参数维度和最终输出的线性变换矩阵的维度,可以保持总体参数量的可控性。同时,多头注意力机制带来的并行计算优势也有助于提升计算效率。

相关推荐
希艾席帝恩18 分钟前
智慧城市建设中,数字孪生的价值在哪里?
人工智能·低代码·私有化部署·数字孪生·数字化转型
我的offer在哪里24 分钟前
开源 AI 生成游戏平台:原理、开源项目与落地实战指南
人工智能·游戏·开源
qidun21037 分钟前
埃夫特机器人防护服使用范围详解-避免十大应用误区
网络·人工智能
Σίσυφος190039 分钟前
PCL Point-to-Point ICP详解
人工智能·算法
PaperRed ai写作降重助手1 小时前
AI 论文写作工具排名(实测不踩坑)
人工智能·aigc·ai写作·论文写作·智能降重·辅助写作·降重复率
ktoking1 小时前
Stock Agent AI 模型的选股器实现 [五]
人工智能·python
qwy7152292581631 小时前
10-图像的翻转
人工智能·opencv·计算机视觉
霍格沃兹测试学院-小舟畅学1 小时前
Playwright企业级测试架构设计:模块化与可扩展性
人工智能·测试工具
玄〤1 小时前
Java 大数据量输入输出优化方案详解:从 Scanner 到手写快读(含漫画解析)
java·开发语言·笔记·算法
卡奥斯开源社区官方1 小时前
深度拆解:Clawdbot“集体永生”技术内核,是AI协同突破还是营销噱头?
人工智能