大模型/NLP/算法面试题总结9——从普通注意力换成多头注意力会导致参数暴涨吗?

从普通注意力换成多头注意力(Multi-Head Attention),通常不会导致参数总量暴涨。相反,在某些实现和配置下,参数量的增加可能相对可控,甚至在某些情况下,通过优化可以实现参数量的有效控制。

参数量分析

  1. 基本构成
    • 普通注意力:通常包括一组用于计算查询(Q)、键(K)和值(V)的线性变换矩阵,以及一个用于输出变换的矩阵。
    • 多头注意力 :则是将输入的特征拆分成多个"头"(Head),每个头独立地计算自己的查询、键和值,并通过各自的注意力机制得到输出。最后,所有头的输出被拼接起来,并经过一个额外的线性变换得到最终输出。
  2. 参数量变化
    • 在多头注意力中,每个头都有自己的查询、键和值变换矩阵(W_q, W_k, W_v),以及一个用于最终输出的线性变换矩阵(W_o)。然而,重要的是要注意到,虽然头的数量增加了,但每个头所使用的参数数量(即每个线性变换矩阵的维度)通常会被相应地调整,以保持总体参数量的可控性。
    • 例如,如果原始的单头注意力中的查询、键和值变换矩阵的维度是d_model,那么在多头注意力中,如果头的数量是h,每个头的查询、键和值变换矩阵的维度可能会调整为d_model/h(或者是一个接近的数值,具体取决于是否需要保持总体维度的一致性)。同时,最终输出的线性变换矩阵W_o的维度也会根据需要进行调整。
  3. 并行计算的优势
    • 多头注意力机制的一个主要优势是它能够并行地处理多个头,这有助于加速计算过程。虽然从表面上看,增加了头的数量似乎会增加计算复杂度,但实际上由于并行性的提高,整体计算效率可以得到提升。

结论

因此,从普通注意力换成多头注意力时,虽然确实会引入更多的参数(主要是每个头自己的查询、键和值变换矩阵),但参数量的增加并不一定是暴涨的。通过合理地调整每个头的参数维度和最终输出的线性变换矩阵的维度,可以保持总体参数量的可控性。同时,多头注意力机制带来的并行计算优势也有助于提升计算效率。

相关推荐
风指引着方向7 分钟前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf
机器之心8 分钟前
英伟达世界模型再进化,一个模型驱动所有机器人!机器人的GPT时刻真正到来
人工智能·openai
Epiphany.5569 分钟前
蓝桥杯备赛题目-----爆破
算法·职场和发展·蓝桥杯
纯爱掌门人14 分钟前
终焉轮回里,藏着 AI 与人类的答案
前端·人工智能·aigc
人工智能AI技术18 分钟前
Transformer:大模型的“万能骨架”
人工智能
YuTaoShao31 分钟前
【LeetCode 每日一题】1653. 使字符串平衡的最少删除次数——(解法三)DP 空间优化
算法·leetcode·职场和发展
茉莉玫瑰花茶36 分钟前
C++ 17 详细特性解析(5)
开发语言·c++·算法
cpp_25011 小时前
P10570 [JRKSJ R8] 网球
数据结构·c++·算法·题解
cpp_25011 小时前
P8377 [PFOI Round1] 暴龙的火锅
数据结构·c++·算法·题解·洛谷
uesowys1 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法