大模型/NLP/算法面试题总结9——从普通注意力换成多头注意力会导致参数暴涨吗?

从普通注意力换成多头注意力(Multi-Head Attention),通常不会导致参数总量暴涨。相反,在某些实现和配置下,参数量的增加可能相对可控,甚至在某些情况下,通过优化可以实现参数量的有效控制。

参数量分析

  1. 基本构成
    • 普通注意力:通常包括一组用于计算查询(Q)、键(K)和值(V)的线性变换矩阵,以及一个用于输出变换的矩阵。
    • 多头注意力 :则是将输入的特征拆分成多个"头"(Head),每个头独立地计算自己的查询、键和值,并通过各自的注意力机制得到输出。最后,所有头的输出被拼接起来,并经过一个额外的线性变换得到最终输出。
  2. 参数量变化
    • 在多头注意力中,每个头都有自己的查询、键和值变换矩阵(W_q, W_k, W_v),以及一个用于最终输出的线性变换矩阵(W_o)。然而,重要的是要注意到,虽然头的数量增加了,但每个头所使用的参数数量(即每个线性变换矩阵的维度)通常会被相应地调整,以保持总体参数量的可控性。
    • 例如,如果原始的单头注意力中的查询、键和值变换矩阵的维度是d_model,那么在多头注意力中,如果头的数量是h,每个头的查询、键和值变换矩阵的维度可能会调整为d_model/h(或者是一个接近的数值,具体取决于是否需要保持总体维度的一致性)。同时,最终输出的线性变换矩阵W_o的维度也会根据需要进行调整。
  3. 并行计算的优势
    • 多头注意力机制的一个主要优势是它能够并行地处理多个头,这有助于加速计算过程。虽然从表面上看,增加了头的数量似乎会增加计算复杂度,但实际上由于并行性的提高,整体计算效率可以得到提升。

结论

因此,从普通注意力换成多头注意力时,虽然确实会引入更多的参数(主要是每个头自己的查询、键和值变换矩阵),但参数量的增加并不一定是暴涨的。通过合理地调整每个头的参数维度和最终输出的线性变换矩阵的维度,可以保持总体参数量的可控性。同时,多头注意力机制带来的并行计算优势也有助于提升计算效率。

相关推荐
小小晓.2 分钟前
Pinely Round 2 (Div. 1 + Div. 2)
c++·算法
极客BIM工作室3 分钟前
ControlNet里的“隐形连接器”:零卷积(Zero Convolution)的工作流程
人工智能·机器学习
北京耐用通信4 分钟前
阀岛的“超级大脑”:耐达讯自动化网关让EtherNet/IP转DeviceNet“说同一种语言”
人工智能·物联网·网络协议·网络安全·自动化·信息与通信
清风拂山岗 明月照大江12 分钟前
简单文件 IO 示例:使用系统调用读写文件
开发语言·c++·算法
泡泡茶壶_ovo15 分钟前
PixCLIP:通过任意粒度像素-文本对齐学习实现细粒度视觉语言理解
人工智能·计算机视觉·对比学习·imagecaptioning
袋鼠云数栈17 分钟前
AI的下半场,产业需要一个怎样的数据中台?
大数据·人工智能·数据挖掘
Hcoco_me20 分钟前
大模型面试题15:DBSCAN聚类算法:步骤、缺陷及改进方向
算法·数据挖掘·聚类
龙邱科技20 分钟前
21届智能车竞赛走马观碑组「灵眼LQUGSCV1」高帧率彩色USB摄像头实测!
人工智能·计算机视觉·目标跟踪
白日做梦Q20 分钟前
盲去噪(Blind Denoising)实战指南:如何处理未知噪声水平的图像
人工智能·深度学习·cnn
AI绘画哇哒哒24 分钟前
AI 智能体长期记忆系统架构设计与落地实践
人工智能·学习·算法·ai·程序员·产品经理·转行