【chatgpt】归一化前训练测试集拆分还是归一化后训练测试集拆分

先拆分数据集然后归一化

在进行机器学习建模时,应该先进行训练测试集拆分(train-test split),然后对训练集进行归一化,再使用训练集的归一化参数对测试集进行归一化处理。这样可以确保归一化过程不泄露测试集的信息,从而避免数据泄漏。具体原因如下:

  1. 避免数据泄漏:如果先归一化再拆分数据集,测试集的信息可能会影响训练集的归一化参数(例如,均值和标准差),这会导致数据泄漏,从而影响模型的泛化能力和性能评估的公正性。

  2. 保持测试集的独立性:通过在拆分数据集之后对训练集进行归一化,可以确保测试集在训练过程中保持独立。测试集应该代表未来未见数据,如果在归一化过程中使用了测试集的信息,这个假设将被打破。

示例代码

以下是一个简单的示例,展示了先拆分数据集然后归一化的过程:

python 复制代码
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 生成示例数据
X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0]])
y = np.array([1, 2, 3, 4])

# 先拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

# 对训练集进行归一化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

# 使用训练集的归一化参数对测试集进行归一化
X_test_scaled = scaler.transform(X_test)

print("Mean of training set:", scaler.mean_)
print("Scale of training set:", scaler.scale_)
print("Transformed X_train:\n", X_train_scaled)
print("Transformed X_test:\n", X_test_scaled)

在这个示例中:

  1. 使用 train_test_split 将数据集拆分为训练集和测试集。
  2. 使用 StandardScaler 对训练集进行归一化,并计算训练集的均值和标准差。
  3. 使用训练集的均值和标准差对测试集进行归一化处理。

这样处理确保了测试集在模型训练过程中是独立的,没有使用测试集的信息来计算归一化参数,从而避免了数据泄漏问题。

相关推荐
G皮T8 小时前
【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
人工智能·chatgpt·llm·大语言模型·deepseek·deepseek-v3·deepseek-r1
坤坤爱学习2.02 天前
求医十年,病因不明,ChatGPT:你看起来有基因突变
人工智能·ai·chatgpt·程序员·大模型·ai编程·大模型学
Ven%2 天前
破译AI黑箱:如何用20行Python理解ChatGPT?
人工智能·python·chatgpt
我不是哆啦A梦2 天前
破解风电运维“百模大战”困局,机械版ChatGPT诞生?
运维·人工智能·python·算法·chatgpt
陈敬雷-充电了么-CEO兼CTO3 天前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
小溪彼岸3 天前
GPT-4o的修图能力强的可怕?
chatgpt·aigc
asyxchenchong8883 天前
ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模
机器学习·语言模型·chatgpt
赛丽曼4 天前
Assistant API的原理及应用
人工智能·chatgpt
c++服务器开发4 天前
一文详解Character AI:实用指南+ ChatGPT、Gemini对比分析
人工智能·chatgpt
香宝的最强后援XD5 天前
Cursor无限邮箱续费方法
语言模型·chatgpt·文心一言