【chatgpt】归一化前训练测试集拆分还是归一化后训练测试集拆分

先拆分数据集然后归一化

在进行机器学习建模时,应该先进行训练测试集拆分(train-test split),然后对训练集进行归一化,再使用训练集的归一化参数对测试集进行归一化处理。这样可以确保归一化过程不泄露测试集的信息,从而避免数据泄漏。具体原因如下:

  1. 避免数据泄漏:如果先归一化再拆分数据集,测试集的信息可能会影响训练集的归一化参数(例如,均值和标准差),这会导致数据泄漏,从而影响模型的泛化能力和性能评估的公正性。

  2. 保持测试集的独立性:通过在拆分数据集之后对训练集进行归一化,可以确保测试集在训练过程中保持独立。测试集应该代表未来未见数据,如果在归一化过程中使用了测试集的信息,这个假设将被打破。

示例代码

以下是一个简单的示例,展示了先拆分数据集然后归一化的过程:

python 复制代码
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 生成示例数据
X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0]])
y = np.array([1, 2, 3, 4])

# 先拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

# 对训练集进行归一化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)

# 使用训练集的归一化参数对测试集进行归一化
X_test_scaled = scaler.transform(X_test)

print("Mean of training set:", scaler.mean_)
print("Scale of training set:", scaler.scale_)
print("Transformed X_train:\n", X_train_scaled)
print("Transformed X_test:\n", X_test_scaled)

在这个示例中:

  1. 使用 train_test_split 将数据集拆分为训练集和测试集。
  2. 使用 StandardScaler 对训练集进行归一化,并计算训练集的均值和标准差。
  3. 使用训练集的均值和标准差对测试集进行归一化处理。

这样处理确保了测试集在模型训练过程中是独立的,没有使用测试集的信息来计算归一化参数,从而避免了数据泄漏问题。

相关推荐
盈达科技1 天前
[盈达科技】GEO(生成式引擎优化)实战指南:从认知重构、技术落地到内容突围的三维战略
人工智能·chatgpt
Feel_狗焕2 天前
transformer架构详解由浅入深-大模型入坑笔记真的很详细
chatgpt·llm
赵钰老师2 天前
【大语言模型DeepSeek+ChatGPT+python】最新AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
人工智能·arcgis·语言模型·chatgpt·数据分析
Awesome Baron3 天前
《Learning Langchain》阅读笔记2-基于 Gemini 的 Langchain PromptTemplate 实现方式
jupyter·chatgpt·langchain·llm
背太阳的牧羊人3 天前
用 MongoIndexStore 实现对话存档和恢复 & 实现“多用户、多对话线程”场景(像一个 ChatGPT 对话列表那样)
mongodb·chatgpt·llamaindex·对话存档·持久化存储聊天
john_hjy3 天前
人类行为的原动力是自我保存-来自ChatGPT
chatgpt
明明跟你说过3 天前
LangChain + 文档处理:构建智能文档问答系统 RAG 的实战指南
人工智能·python·语言模型·自然语言处理·chatgpt·langchain·gpt-3
爱的叹息3 天前
LangChain、LlamaIndex 和 ChatGPT 的详细对比分析及总结表格
人工智能·chatgpt·langchain
自由鬼3 天前
AI当前状态:有哪些新技术
人工智能·深度学习·算法·ai·chatgpt·deepseek
AIGC大时代3 天前
使用DeepSeek的AIGC的内容创作者,如何看待陈望道先生所著的《修辞学发凡》?
人工智能·chatgpt·aigc·智能写作·deepseek·aiwritepaper