目录标题
介绍
在深度学习时用min-batch来平衡训练时间和性能上的需求,之后训练周期要写成两层嵌套循环。epoch:所有训练样本进行完一次前向和反向传播,batch-size:训练的时候的样本数量,Iteration:总训练数据/训练样本数
集成了dataset之后编写的类就可以用dataset的功能了
train_loader = DataLoader(dataset=dataset, batch_size=32,shuffle=True, num_workers=2)
训练的代码要用main包装起来
解释:数据集,批数据大小,是否打乱,构成batch读取数据的时候是不是要用多线程,几个并行的线程
1、需要mini_batch 就需要import DataSet和DataLoader
2、继承DataSet的类需要重写init,getitem,len魔法函数。分别是为了加载数据集,获取数据索引,获取数据总量。
3、DataLoader对数据集先打乱(shuffle),然后划分成mini_batch。
4、len函数的返回值 除以 batch_size 的结果就是每一轮epoch中需要迭代的次数。
5、inputs, labels = data中的inputs的shape是[32,8],labels 的shape是[32,1]。表明成功使用mini-batch=32
python
# class DiabetesDataset(Dataset):
# def __init__(self, filepath):
# xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
# self.len = xy.shape[0] # shape(多少行,多少列)
# self.x_data = torch.from_numpy(xy[:, :-1])
# self.y_data = torch.from_numpy(xy[:, [-1]])
#
# def __getitem__(self, index):
# return self.x_data[index], self.y_data[index]
#
# def __len__(self):
# return self.len
课程代码
python
import torch
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
# 读取原始数据,并划分训练集和测试集
raw_data = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
X = raw_data[:, :-1]
y = raw_data[:, [-1]]
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, y, test_size=0.3)
Xtest = torch.from_numpy(Xtest)
Ytest = torch.from_numpy(Ytest)
# 将训练数据集进行批量处理
# prepare dataset
class DiabetesDataset(Dataset):
def __init__(self, data, label):
self.len = data.shape[0] # shape(多少行,多少列)
self.x_data = torch.from_numpy(data)
self.y_data = torch.from_numpy(label)
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
train_dataset = DiabetesDataset(Xtrain, Ytrain)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, num_workers=0) # num_workers 多线程
# design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 2)
self.linear4 = torch.nn.Linear(2, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
x = self.sigmoid(self.linear4(x))
return x
model = Model()
# construct loss and optimizer
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# training cycle forward, backward, update
def train(epoch):
train_loss = 0.0
count = 0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
y_pred = model(inputs)
loss = criterion(y_pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
count = i
if epoch % 200 == 199:
print("train loss:", train_loss / count, end=',')
def test():
with torch.no_grad():
y_pred = model(Xtest)
y_pred_label = torch.where(y_pred >= 0.5, torch.tensor([1.0]), torch.tensor([0.0]))
acc = torch.eq(y_pred_label, Ytest).sum().item() / Ytest.size(0)
print("test acc:", acc)
if __name__ == '__main__':
for epoch in range(5000):
train(epoch)
if epoch % 200 == 199:
test()
作业实现
数据集下载地址,找到train.csv和test.csv,重点是这里的数据,由于数据集中包含非数值数据和缺失值,需要对数据进行清理和转换,这里是问gpt实现的
python
import torch
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import StandardScaler
# 数据预处理
def preprocess_data(df):
# 处理缺失值
df['Age'].fillna(df['Age'].median(), inplace=True)
df['Fare'].fillna(df['Fare'].median(), inplace=True)
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
# 将分类数据转换为数值数据
df['Sex'] = df['Sex'].map({'male': 0, 'female': 1})
df['Embarked'] = df['Embarked'].map({'C': 0, 'Q': 1, 'S': 2})
# 选择特征
features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
df = df[features]
return df
# 读取训练数据并预处理
train_df = pd.read_csv('./dataset/train.csv')
train_df = preprocess_data(train_df)
# 提取特征和标签
x_train = train_df.values
y_train = pd.read_csv('./dataset/train.csv')['Survived'].values
# 标准化特征
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
# 将测试数据加载并预处理
test_df = pd.read_csv('./dataset/test.csv')
passenger_ids = test_df['PassengerId'].values
test_df = preprocess_data(test_df)
Xtest = scaler.transform(test_df.values)
Xtest = torch.from_numpy(Xtest).float()
# 创建自定义数据集
class TitanicDataset(Dataset):
def __init__(self, data, labels):
self.data = torch.from_numpy(data).float()
self.labels = torch.from_numpy(labels).float()
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
# 创建数据加载器
train_dataset = TitanicDataset(x_train, y_train)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)
# 定义模型
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(7, 32)
self.linear2 = torch.nn.Linear(32, 16)
self.linear3 = torch.nn.Linear(16, 1)
self.activate = torch.nn.ReLU()
def forward(self, x):
x = self.activate(self.linear1(x))
x = self.activate(self.linear2(x))
x = torch.sigmoid(self.linear3(x))
return x
# 实例化模型
model = Model()
# 定义损失函数和优化器
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 训练模型
def train(epoch):
model.train()
train_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
labels = labels.view(-1, 1) # 调整标签形状以匹配输出
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
if epoch % 200 == 199:
print(f"Epoch {epoch + 1}, Train Loss: {train_loss / len(train_loader)}")
# 训练循环
if __name__ == '__main__':
for epoch in range(5000):
train(epoch)
# 预测测试数据
with torch.no_grad():
model.eval()
y_pred = model(Xtest)
y_pred_label = (y_pred >= 0.5).float().numpy().astype(int)
print(y_pred_label)
# 将预测结果保存为CSV文件
output = pd.DataFrame({'PassengerId': passenger_ids, 'Survived': y_pred_label.flatten()})
output.to_csv('submission.csv', index=False)
得分:0.72966
让gpt改进了一下网络部分:
python
import torch
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
# 数据预处理
def preprocess_data(df):
df['Age'].fillna(df['Age'].median(), inplace=True)
df['Fare'].fillna(df['Fare'].median(), inplace=True)
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
df['Sex'] = df['Sex'].map({'male': 0, 'female': 1})
df['Embarked'] = df['Embarked'].map({'C': 0, 'Q': 1, 'S': 2})
features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
df = df[features]
return df
# 读取训练数据并预处理
train_df = pd.read_csv('./dataset/train.csv')
train_df = preprocess_data(train_df)
x_train = train_df.values
y_train = pd.read_csv('./dataset/train.csv')['Survived'].values
# 标准化特征
scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
# 将测试数据加载并预处理
test_df = pd.read_csv('./dataset/test.csv')
passenger_ids = test_df['PassengerId'].values
test_df = preprocess_data(test_df)
Xtest = scaler.transform(test_df.values)
Xtest = torch.from_numpy(Xtest).float()
# 创建自定义数据集
class TitanicDataset(Dataset):
def __init__(self, data, labels):
self.data = torch.from_numpy(data).float()
self.labels = torch.from_numpy(labels).float()
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx], self.labels[idx]
# 创建数据加载器
train_dataset = TitanicDataset(x_train, y_train)
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)
# 定义改进的模型
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(7, 64)
self.linear2 = torch.nn.Linear(64, 32)
self.linear3 = torch.nn.Linear(32, 16)
self.linear4 = torch.nn.Linear(16, 1)
self.activate = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(p=0.5)
def forward(self, x):
x = self.activate(self.linear1(x))
x = self.dropout(x)
x = self.activate(self.linear2(x))
x = self.dropout(x)
x = self.activate(self.linear3(x))
x = torch.sigmoid(self.linear4(x))
return x
# 实例化模型
model = Model()
# 定义损失函数和优化器
criterion = torch.nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
def train(epoch):
model.train()
train_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
labels = labels.view(-1, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
if epoch % 200 == 199:
print(f"Epoch {epoch + 1}, Train Loss: {train_loss / len(train_loader)}")
# 训练循环
if __name__ == '__main__':
for epoch in range(5000):
train(epoch)
# 预测测试数据
with torch.no_grad():
model.eval()
y_pred = model(Xtest)
y_pred_label = (y_pred >= 0.5).float().numpy().astype(int)
# 将预测结果保存为CSV文件
output = pd.DataFrame({'PassengerId': passenger_ids, 'Survived': y_pred_label.flatten()})
output.to_csv('submission4.csv', index=False)
得分0.75358好吧看上去没有优化多少