论文略读:LoRA Learns Less and Forgets Less

202405 arxiv

1 主要思想

LORA相比于全参数训练,学的少,但忘的也少

2 实验分析

2.1 训练的表现

  • 在编程和数学任务中,LoRA相比全参数微调表现出明显的劣势

2.2 遗忘的表现

  • 这边的遗忘,是指在数据集A上预训练,然后在数据集B上继续finetune,看在数据集A上的表现
  • 相比全参数微调,LoRA学会的东西较少,但遗忘也相对更少

3 论文的分析:Lora的正则化特性

  • LoRA提供了比经典正则化技术,如权重衰减和dropout,更强的正则化效果。
  • 在下游任务上LoRA的表现低于大多数正则化方法(左图);在遗忘上LoRA优于所有正则化方法(右图)
相关推荐
147API44 分钟前
60,000 星的代价:解析 OpenClaw 的架构设计与安全教训
人工智能·安全·aigc·clawdbot·moltbot·openclaw
audyxiao0011 小时前
智能交通顶刊TITS论文分享|如何利用驾驶感知世界模型实现无信号灯路口自动驾驶?
人工智能·机器学习·自动驾驶·tits
lisw051 小时前
氛围炒股概述!
大数据·人工智能·机器学习
hjs_deeplearning1 小时前
文献阅读篇#16:自动驾驶中的视觉语言模型:综述与展望
人工智能·语言模型·自动驾驶
爱喝可乐的老王2 小时前
PyTorch深度学习参数初始化和正则化
人工智能·pytorch·深度学习
杭州泽沃电子科技有限公司5 小时前
为电气风险定价:如何利用监测数据评估工厂的“电气安全风险指数”?
人工智能·安全
Godspeed Zhao6 小时前
自动驾驶中的传感器技术24.3——Camera(18)
人工智能·机器学习·自动驾驶
顾北128 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887828 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰8 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成