论文略读:LoRA Learns Less and Forgets Less

202405 arxiv

1 主要思想

LORA相比于全参数训练,学的少,但忘的也少

2 实验分析

2.1 训练的表现

  • 在编程和数学任务中,LoRA相比全参数微调表现出明显的劣势

2.2 遗忘的表现

  • 这边的遗忘,是指在数据集A上预训练,然后在数据集B上继续finetune,看在数据集A上的表现
  • 相比全参数微调,LoRA学会的东西较少,但遗忘也相对更少

3 论文的分析:Lora的正则化特性

  • LoRA提供了比经典正则化技术,如权重衰减和dropout,更强的正则化效果。
  • 在下游任务上LoRA的表现低于大多数正则化方法(左图);在遗忘上LoRA优于所有正则化方法(右图)
相关推荐
蚝油菜花7 分钟前
DeepSite:基于DeepSeek的开源AI前端开发神器,一键生成游戏/网页代码
人工智能·开源
蚝油菜花7 分钟前
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
人工智能·开源
蚝油菜花10 分钟前
DreamActor-M1:字节跳动推出AI动画黑科技,静态照片秒变生动视频
人工智能·开源
MPCTHU11 分钟前
预测分析(三):基于机器学习的分类预测
人工智能·机器学习·分类
jndingxin18 分钟前
OpenCV 图形API(11)对图像进行掩码操作的函数mask()
人工智能·opencv·计算机视觉
Scc_hy27 分钟前
强化学习_Paper_1988_Learning to predict by the methods of temporal differences
人工智能·深度学习·算法
袁煦丞30 分钟前
【亲测】1.5万搞定DeepSeek满血版!本地部署避坑指南+内网穿透黑科技揭秘
人工智能·程序员·远程工作
大模型真好玩32 分钟前
理论+代码一文带你深入浅出MCP:人工智能大模型与外部世界交互的革命性突破
人工智能·python·mcp
遇码1 小时前
大语言模型开发框架——LangChain
人工智能·语言模型·langchain·llm·大模型开发·智能体