主流大数据调度工具DolphinScheduler之数据采集

今天继续给大家分享主流大数据调度工具DolphinScheduler,以及数据的ETL流程。

一:调度工具DS

主流大数据调度工具DolphinScheduler,

其定位:解决数据处理流程中错综复杂的依赖关系

任务支持类型:支持传统的shell任务,同时支持大数据平台任务调度:MR、Spark、SQL(mysql、postgresql、hive/sparksql)、python、procedure、sub_process。

二,数据ETL流程(调度流程)

今天分享一个把数据从人大金仓数据库采集到大数据hive的案例。

0,业务概念

数据采集:指的是从其他的数据库,Oracle,MySQL,kingbase里的数据同步到hive大数据。

采集原理:本次分享的数据采集,其底层实现逻辑是sqoop。

数据同步都是有严格的规范性。

1,先在数据库查询该表的数据信息

2,在hive里创建表以备数据同步用

红色方框里是从数据库同步过来的数据,

蓝色方框里是系统自动生成的数据。

3,确认hive该表暂无数据

4,首先创建工作流

5,配置工作流信息

6,参数设置

7,核心是脚本开发

注明源数据库系统名,数据库名,表名等。

sync_type = 1 是全量同步,传参到shell脚本里。

从其他数据库同步到hive大数据,名称都是有规范的。

可以看到target_tab_name,名字是由源系统名,源库名,源表名,给拼接起来的。

至于原理为什么说是sqoop,是因为sync_data_to_hive_ods.sh 里面调用的sqoop的数据同步方法。当然也可以在里面开发采用datax的数据同步方式。

8,执行之后,看日志

发现日志是成功的。

9,检查数据是否同步到hive数仓

10,仔细看看系统自动生成的数据长什么样


好啦,今天这篇主要介绍主流调度工具DS的数据采集的全流程,工作实战。

希望你看得尽兴,学得开心。不难,但很重要。

下次再见!

相关推荐
AI架构全栈开发实战笔记8 小时前
Eureka 在大数据环境中的性能优化技巧
大数据·ai·eureka·性能优化
AI架构全栈开发实战笔记8 小时前
Eureka 对大数据领域服务依赖关系的梳理
大数据·ai·云原生·eureka
自挂东南枝�9 小时前
政企舆情大数据服务平台的“全域洞察中枢”
大数据
LaughingZhu9 小时前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营
玄同76510 小时前
Git常用命令指南
大数据·git·elasticsearch·gitee·github·团队开发·远程工作
瑞华丽PLM11 小时前
电子行业国产PLM系统功能差异化对比表
大数据·plm·国产plm·瑞华丽plm·瑞华丽
深圳市恒星物联科技有限公司12 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
是做服装的同学13 小时前
如何选择适合的服装企业ERP系统才能提升业务效率?
大数据·经验分享·其他
藦卡机器人14 小时前
国产机械臂做的比较好的品牌有哪些?
大数据·数据库·人工智能