Langchain 与 LlamaIndex:LLM 应用开发框架的比较与使用建议

Langchain 和 Llamaindex 是两种广泛使用的主流 LLM 应用开发框架。两者有什么不同?我们该如何使用?以下我根据各类资料和相关文档做了初步选型。

一、Langchain

1. 适用场景

(1)需要构建灵活、可扩展的通用应用程序。

(2)需要复杂的工作流程支持。

(3)需要复杂的交互和上下文保留功能。

(4)需要广泛的功能和工具集成。

2. 优势

(1)更通用的框架,适用于各种应用程序。

(2)提供丰富的工具用于加载、处理和索引数据以及与 LLM 交互。

(3)高度灵活,允许用户自定义应用程序的行为。

3. 特色

(1)LangSmith 是一个用于构建生产级 LLM 应用程序的平台。它允许您密切监控和评估您的应用程序,以便您可以快速而自信地交付。

(2)LangServe 帮助开发人员将可运行 LangChain 对象和链部署 为 REST API。

二、LlamaIndex

1. 适用场景

(1) 需要构建高效、简单的搜索和检索应用程序。

(2) 需要处理大量数据的应用程序。

(3) 需要快速访问和检索数据的功能。

2. 优势

(1) 专为搜索和检索应用程序设计。

(2) 提供简单的界面来查询 LLM 和检索相关文档。

(3) 高效处理大量数据,使其在处理大数据时表现更好。

三、总体结论

(1)LangChain 适合需要灵活性和复杂功能的通用应用程序。

(2)LlamaIndex 适合需要高效数据检索和搜索功能的应用程序。

根据您的具体需求和应用场景,选择相应的框架将有助于更好地实现项目目标。

四、个人看法

(1)LangChain 是 LLM 应用开发必备框架。

(2)如果仅是上手 RAG 相关开发,可以先考虑使用 LlamaIndex 快速高效实现,后续如果将 RAG 打造成 Agent 等实现的中台,建议再引入 LangChain。

五、参考资料

1. 相关资料

(1)Comparing LangChain and LlamaIndex with 4 tasks

(2)Differences between Langchain & LlamaIndex [closed]

(3)What is the difference between LlamaIndex and LangChain

2. 官方文档

(1)LlamaIndex

(2)LangChain

(3)LangSmith

相关推荐
bastgia13 小时前
Tokenformer: 下一代Transformer架构
人工智能·机器学习·llm
新智元18 小时前
李飞飞谢赛宁:多模态 LLM「空间大脑」觉醒,惊现世界模型雏形!
人工智能·llm
RWKV元始智能1 天前
RWKV-7:极先进的大模型架构,长文本能力极强
人工智能·llm
zaim12 天前
计算机的错误计算(一百八十七)
人工智能·ai·大模型·llm·错误·正弦/sin·误差/error
张拭心2 天前
Google 提供的 Android 端上大模型组件:MediaPipe LLM 介绍
android·人工智能·llm
带电的小王2 天前
whisper.cpp: Android端测试 -- Android端手机部署音频大模型
android·智能手机·llm·whisper·音频大模型·whisper.cpp
带电的小王2 天前
whisper.cpp: PC端测试 -- 电脑端部署音频大模型
llm·whisper·音视频·音频大模型
Ambition_LAO2 天前
LLaMA-Factory QuickStart 流程详解
llm·llama
宇梵文书C3 天前
在CFFF云平台使用llama-factory部署及微调Qwen2.5-7B-Instruct
llm·llama·cfff
zaim13 天前
计算机的错误计算(一百八十六)
人工智能·python·ai·大模型·llm·误差·decimal