Langchain 与 LlamaIndex:LLM 应用开发框架的比较与使用建议

Langchain 和 Llamaindex 是两种广泛使用的主流 LLM 应用开发框架。两者有什么不同?我们该如何使用?以下我根据各类资料和相关文档做了初步选型。

一、Langchain

1. 适用场景

(1)需要构建灵活、可扩展的通用应用程序。

(2)需要复杂的工作流程支持。

(3)需要复杂的交互和上下文保留功能。

(4)需要广泛的功能和工具集成。

2. 优势

(1)更通用的框架,适用于各种应用程序。

(2)提供丰富的工具用于加载、处理和索引数据以及与 LLM 交互。

(3)高度灵活,允许用户自定义应用程序的行为。

3. 特色

(1)LangSmith 是一个用于构建生产级 LLM 应用程序的平台。它允许您密切监控和评估您的应用程序,以便您可以快速而自信地交付。

(2)LangServe 帮助开发人员将可运行 LangChain 对象和链部署 为 REST API。

二、LlamaIndex

1. 适用场景

(1) 需要构建高效、简单的搜索和检索应用程序。

(2) 需要处理大量数据的应用程序。

(3) 需要快速访问和检索数据的功能。

2. 优势

(1) 专为搜索和检索应用程序设计。

(2) 提供简单的界面来查询 LLM 和检索相关文档。

(3) 高效处理大量数据,使其在处理大数据时表现更好。

三、总体结论

(1)LangChain 适合需要灵活性和复杂功能的通用应用程序。

(2)LlamaIndex 适合需要高效数据检索和搜索功能的应用程序。

根据您的具体需求和应用场景,选择相应的框架将有助于更好地实现项目目标。

四、个人看法

(1)LangChain 是 LLM 应用开发必备框架。

(2)如果仅是上手 RAG 相关开发,可以先考虑使用 LlamaIndex 快速高效实现,后续如果将 RAG 打造成 Agent 等实现的中台,建议再引入 LangChain。

五、参考资料

1. 相关资料

(1)Comparing LangChain and LlamaIndex with 4 tasks

(2)Differences between Langchain & LlamaIndex [closed]

(3)What is the difference between LlamaIndex and LangChain

2. 官方文档

(1)LlamaIndex

(2)LangChain

(3)LangSmith

相关推荐
laplace01232 小时前
第三章 大语言模型基础
人工智能·语言模型·自然语言处理·agent·rag
鸟窝聊技术3 小时前
拆解Manus: 使用文件系统作为上下文
llm·agent
Codelinghu3 小时前
「 LLM实战 - 企业 」构建企业级RAG系统:基于Milvus向量数据库的高效检索实践
人工智能·后端·llm
小Pawn爷3 小时前
12. 智能与风险并存:金融AI的成本,合规与伦理平衡术
人工智能·金融·llm·合规
小Pawn爷4 小时前
11.大模型评估
llm·llama·fingpt
TTGGGFF5 小时前
什么是RAG重排序? 3 分钟落地最强轻量级重排序模型 BGE-Reranker-v2-m3
rag·重排序
人工干智能5 小时前
OpenAI中,索引取值与点取值:message.content[0].text.value
llm
学Linux的语莫5 小时前
Rag操作-Ragas评估
langchain·rag
阿里巴巴P8资深技术专家5 小时前
Spring Boot 实现文档智能解析与向量化:支持 Tika、MinerU、OCR 与 SSE 实时进度反馈
ai·ocr·ai大模型·rag·文档解析·mineru·tike
太空眼睛6 小时前
【MCP】使用SpringBoot基于Streamable-HTTP构建MCP-Client
spring boot·ai·llm·sse·mcp·mcp-client·streamable