Langchain 与 LlamaIndex:LLM 应用开发框架的比较与使用建议

Langchain 和 Llamaindex 是两种广泛使用的主流 LLM 应用开发框架。两者有什么不同?我们该如何使用?以下我根据各类资料和相关文档做了初步选型。

一、Langchain

1. 适用场景

(1)需要构建灵活、可扩展的通用应用程序。

(2)需要复杂的工作流程支持。

(3)需要复杂的交互和上下文保留功能。

(4)需要广泛的功能和工具集成。

2. 优势

(1)更通用的框架,适用于各种应用程序。

(2)提供丰富的工具用于加载、处理和索引数据以及与 LLM 交互。

(3)高度灵活,允许用户自定义应用程序的行为。

3. 特色

(1)LangSmith 是一个用于构建生产级 LLM 应用程序的平台。它允许您密切监控和评估您的应用程序,以便您可以快速而自信地交付。

(2)LangServe 帮助开发人员将可运行 LangChain 对象和链部署 为 REST API。

二、LlamaIndex

1. 适用场景

(1) 需要构建高效、简单的搜索和检索应用程序。

(2) 需要处理大量数据的应用程序。

(3) 需要快速访问和检索数据的功能。

2. 优势

(1) 专为搜索和检索应用程序设计。

(2) 提供简单的界面来查询 LLM 和检索相关文档。

(3) 高效处理大量数据,使其在处理大数据时表现更好。

三、总体结论

(1)LangChain 适合需要灵活性和复杂功能的通用应用程序。

(2)LlamaIndex 适合需要高效数据检索和搜索功能的应用程序。

根据您的具体需求和应用场景,选择相应的框架将有助于更好地实现项目目标。

四、个人看法

(1)LangChain 是 LLM 应用开发必备框架。

(2)如果仅是上手 RAG 相关开发,可以先考虑使用 LlamaIndex 快速高效实现,后续如果将 RAG 打造成 Agent 等实现的中台,建议再引入 LangChain。

五、参考资料

1. 相关资料

(1)Comparing LangChain and LlamaIndex with 4 tasks

(2)Differences between Langchain & LlamaIndex [closed]

(3)What is the difference between LlamaIndex and LangChain

2. 官方文档

(1)LlamaIndex

(2)LangChain

(3)LangSmith

相关推荐
gr178514 分钟前
通过dify文件上传能力,解决较大文本与LLM实时交互问题
python·llm·aigc·dify
玄同7652 小时前
数据库全解析:从关系型到向量数据库,LLM 开发中的选型指南
数据库·人工智能·知识图谱·milvus·知识库·向量数据库·rag
烙印6012 小时前
RAG智能体深度解析(一)
ai·agent·rag
北京地铁1号线3 小时前
5.1 RAG系统的自动化评测
自动化·rag·评测·ragas·trulens
gentle coder9 小时前
【RAG】大模型RAG开发
大模型·agent·rag
EdisonZhou12 小时前
MAF快速入门(14)快速集成A2A Agent
llm·agent·.net core
无名修道院16 小时前
AI大模型应用开发-RAG 基础:向量数据库(FAISS/Milvus)、文本拆分、相似性搜索(“让模型查资料再回答”)
人工智能·向量数据库·rag·ai大模型应用开发
CCPC不拿奖不改名18 小时前
RAG基础:基于LangChain 的文本分割实战+文本分块
人工智能·python·langchain·知识库·改行学it·rag·向量库
gentle coder19 小时前
【langchain】AI应用开发框架
langchain·llm·rag
OPEN-Source20 小时前
大模型实战:把 LangChain / LlamaIndex 工作流接入监控与告警体系
人工智能·langchain·企业微信·rag