Langchain 与 LlamaIndex:LLM 应用开发框架的比较与使用建议

Langchain 和 Llamaindex 是两种广泛使用的主流 LLM 应用开发框架。两者有什么不同?我们该如何使用?以下我根据各类资料和相关文档做了初步选型。

一、Langchain

1. 适用场景

(1)需要构建灵活、可扩展的通用应用程序。

(2)需要复杂的工作流程支持。

(3)需要复杂的交互和上下文保留功能。

(4)需要广泛的功能和工具集成。

2. 优势

(1)更通用的框架,适用于各种应用程序。

(2)提供丰富的工具用于加载、处理和索引数据以及与 LLM 交互。

(3)高度灵活,允许用户自定义应用程序的行为。

3. 特色

(1)LangSmith 是一个用于构建生产级 LLM 应用程序的平台。它允许您密切监控和评估您的应用程序,以便您可以快速而自信地交付。

(2)LangServe 帮助开发人员将可运行 LangChain 对象和链部署 为 REST API。

二、LlamaIndex

1. 适用场景

(1) 需要构建高效、简单的搜索和检索应用程序。

(2) 需要处理大量数据的应用程序。

(3) 需要快速访问和检索数据的功能。

2. 优势

(1) 专为搜索和检索应用程序设计。

(2) 提供简单的界面来查询 LLM 和检索相关文档。

(3) 高效处理大量数据,使其在处理大数据时表现更好。

三、总体结论

(1)LangChain 适合需要灵活性和复杂功能的通用应用程序。

(2)LlamaIndex 适合需要高效数据检索和搜索功能的应用程序。

根据您的具体需求和应用场景,选择相应的框架将有助于更好地实现项目目标。

四、个人看法

(1)LangChain 是 LLM 应用开发必备框架。

(2)如果仅是上手 RAG 相关开发,可以先考虑使用 LlamaIndex 快速高效实现,后续如果将 RAG 打造成 Agent 等实现的中台,建议再引入 LangChain。

五、参考资料

1. 相关资料

(1)Comparing LangChain and LlamaIndex with 4 tasks

(2)Differences between Langchain & LlamaIndex [closed]

(3)What is the difference between LlamaIndex and LangChain

2. 官方文档

(1)LlamaIndex

(2)LangChain

(3)LangSmith

相关推荐
CoderLiu5 小时前
用这个MCP,只给大模型一个figma链接就能直接导出图片,还能自动压缩上传?
前端·llm·mcp
在未来等你9 小时前
RAG实战指南 Day 4:LlamaIndex框架实战指南
大语言模型·rag·llamaindex·检索增强生成·ai开发
智泊AI10 小时前
大语言模型LLM底层技术原理到底是什么?大型语言模型如何工作?
llm
moonless022210 小时前
🌈Transformer说人话版(二)位置编码 【持续更新ing】
人工智能·llm
小爷毛毛_卓寿杰10 小时前
基于大模型与知识图谱的对话引导意图澄清系统技术解析
人工智能·llm
聚客AI11 小时前
解构高效提示工程:分层模型、文本扩展引擎与可视化调试全链路指南
人工智能·llm·掘金·日新计划
AI大模型14 小时前
LangGraph官方文档笔记(4)——提示聊天机器人
程序员·langchain·llm
Baihai_IDP15 小时前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
养心进行时16 小时前
为什么模型训练中会有“机器评分高,但人工评分却很差”的情况?
llm
养心进行时16 小时前
大模型微调后,可上线的标准是什么?
llm