Python按条件筛选、剔除表格数据并绘制剔除前后的直方图

本文介绍基于Python 语言,读取Excel 表格文件数据,以其中某一列数据的值 为标准,对于这一列数据处于指定范围所有行 ,再用其他几列数据 的数值,加以数据筛选与剔除;同时,对筛选前、后的数据分别绘制若干直方图 ,并将结果数据导出保存为一个新的Excel表格文件的方法。

首先,我们来明确一下本文的具体需求。现有一个Excel 表格文件,在本文中我们就以.csv格式的文件为例;其中,如下图所示,这一文件中有一列(在本文中也就是days这一列)数据,我们将其作为基准数据 ,希望首先取出days数值处于045320365范围内的所有样本(一行就是一个样本),进行后续的操作。

其次,对于取出的样本,再依据其他4列(在本文中也就是blue_difgreen_difred_difinf_dif4列)数据,将这4列数据不在指定数值区域内的行 删除。在这一过程中,我们还希望绘制在数据删除前、后,这4列(也就是blue_difgreen_difred_difinf_dif4列)数据各自的直方图,一共是8张图。最后,我们还希望将删除上述数据后的数据保存为一个新的Excel表格文件。

知道了需求,我们就可以撰写代码。本文所用的代码如下所示。

python 复制代码
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 12 07:55:40 2023

@author: fkxxgis
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

original_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Main_Over_NIR.csv"
# original_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/TEST.csv"
result_file_path = "E:/01_Reflectivity/99_Model/02_Extract_Data/26_Train_Model_New/Train_Model_0715_Main_Over_NIR_New.csv"

df = pd.read_csv(original_file_path)

blue_original = df[(df['blue_dif'] >= -0.08) & (df['blue_dif'] <= 0.08)]['blue_dif']
green_original = df[(df['green_dif'] >= -0.08) & (df['green_dif'] <= 0.08)]['green_dif']
red_original = df[(df['red_dif'] >= -0.08) & (df['red_dif'] <= 0.08)]['red_dif']
inf_original = df[(df['inf_dif'] >= -0.1) & (df['inf_dif'] <= 0.1)]['inf_dif']

mask = ((df['days'] >= 0) & (df['days'] <= 45)) | ((df['days'] >= 320) & (df['days'] <= 365))
range_min = -0.03
range_max = 0.03

df.loc[mask, 'blue_dif'] = df.loc[mask, 'blue_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'green_dif'] = df.loc[mask, 'green_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'red_dif'] = df.loc[mask, 'red_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x]))
df.loc[mask, 'inf_dif'] = df.loc[mask, 'inf_dif'].apply(lambda x: x if range_min <= x <= range_max else np.random.choice([np.nan, x], p =[0.9, 0.1]))
df = df.dropna()

blue_new = df[(df['blue_dif'] >= -0.08) & (df['blue_dif'] <= 0.08)]['blue_dif']
green_new = df[(df['green_dif'] >= -0.08) & (df['green_dif'] <= 0.08)]['green_dif']
red_new = df[(df['red_dif'] >= -0.08) & (df['red_dif'] <= 0.08)]['red_dif']
inf_new = df[(df['inf_dif'] >= -0.1) & (df['inf_dif'] <= 0.1)]['inf_dif']

plt.figure(0)
plt.hist(blue_original, bins = 50)
plt.figure(1)
plt.hist(green_original, bins = 50)
plt.figure(2)
plt.hist(red_original, bins = 50)
plt.figure(3)
plt.hist(inf_original, bins = 50)

plt.figure(4)
plt.hist(blue_new, bins = 50)
plt.figure(5)
plt.hist(green_new, bins = 50)
plt.figure(6)
plt.hist(red_new, bins = 50)
plt.figure(7)
plt.hist(inf_new, bins = 50)

df.to_csv(result_file_path, index=False)

首先,我们通过pd.read_csv函数从指定路径的.csv文件中读取数据,并将其存储在名为dfDataFrame中。

接下来,通过一系列条件筛选操作,从原始数据中选择满足特定条件的子集。具体来说,我们筛选出了在blue_difgreen_difred_difinf_dif4列中数值在一定范围内的数据,并将这些数据存储在名为blue_originalgreen_originalred_originalinf_original的新Series中,这些数据为我们后期绘制直方图做好了准备。

其次,创建一个名为mask的布尔掩码,该掩码用于筛选满足条件的数据。在这里,它筛选出了days列的值在045之间或在320365之间的数据。

随后,我们使用apply函数和lambda表达式,对于days列的值在045之间或在320365之间的行,如果其blue_difgreen_difred_difinf_dif4列的数据不在指定范围内,那么就将这列的数据随机设置为NaNp =[0.9, 0.1]则是指定了随机替换为NaN 的概率。这里需要注意,如果我们不给出p =[0.9, 0.1]这样的概率分布,那么程序将依据均匀分布的原则随机选取数据。

最后,我们使用dropna函数,删除包含NaN 值的行,从而得到筛选处理后的数据。其次,我们依然根据这四列的筛选条件,计算出处理后的数据的子集,存储在blue_newgreen_newred_newinf_new中。紧接着,使用Matplotlib 创建直方图来可视化原始数据和处理后数据的分布;这些直方图被分别存储在8个不同的图形中。

代码的最后,将处理后的数据保存为新的.csv文件,该文件路径由result_file_path指定。

运行上述代码,我们将得到8张直方图,如下图所示。且在指定的文件夹中看到结果文件。

至此,大功告成。

相关推荐
蓝天星空1 小时前
Python调用open ai接口
人工智能·python
jasmine s1 小时前
Pandas
开发语言·python
郭wes代码1 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
leaf_leaves_leaf1 小时前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零11 小时前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
404NooFound1 小时前
Python轻量级NoSQL数据库TinyDB
开发语言·python·nosql
天天要nx2 小时前
D102【python 接口自动化学习】- pytest进阶之fixture用法
python·pytest
minstbe2 小时前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
落魄实习生2 小时前
AI应用-本地模型实现AI生成PPT(简易版)
python·ai·vue·ppt
苏言の狗2 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习