《昇思25天学习打卡营第21天|Pix2Pix实现图像转换》

Pix2Pix 是一种图像转换模型,使用条件生成对抗网络(Conditional Generative Adversarial Networks,cGANs)实现图像到图像的转换。它主要由生成器(Generator)和判别器(Discriminator)两部分组成。

Pix2Pix 可以应用于多种图像到图像的转换任务,例如:

  • 黑白图像上色
  • 图像去噪
  • 图像修复
  • 图像合成(如从草图生成真实图像)

基础原理

cGAN的生成器与传统GAN的生成器在原理上有一些区别,cGAN的生成器是将输入图片作为指导信息,由输入图像不断尝试生成用于迷惑判别器的"假"图像,由输入图像转换输出为相应"假"图像的本质是从像素到另一个像素的映射,而传统GAN的生成器是基于一个给定的随机噪声生成图像,输出图像通过其他约束条件控制生成,这是cGAN和GAN的在图像翻译任务中的差异。Pix2Pix中判别器的任务是判断从生成器输出的图像是真实的训练图像还是生成的"假"图像。在生成器与判别器的不断博弈过程中,模型会达到一个平衡点,生成器输出的图像与真实训练数据使得判别器刚好具有50%的概率判断正确。

  • 生成器(Generator)

    • 生成器接受一张输入图像,并将其转换为目标图像。生成器通常采用编码器-解码器(Encoder-Decoder)的结构。编码器将输入图像编码为低维的特征表示,解码器则将这些特征表示解码为目标图像。
    • 在 Pix2Pix 中,生成器的目标是生成尽可能逼真的目标图像,使得这些图像无法被判别器正确区分。
  • 判别器(Discriminator)

    • 判别器的任务是区分真实的目标图像和生成器生成的伪造图像。它接受一对图像(输入图像和目标图像),并输出一个表示该对图像是否为真实数据的概率。
    • 判别器通常是一个卷积神经网络(CNN),用于提取图像特征并进行分类。
  • 损失函数(Loss Function)

    • Pix2Pix 使用 cGANs 的损失函数,其中包含对抗损失和 L1 损失。
    • 对抗损失(Adversarial Loss):用于训练生成器和判别器。生成器试图最大化判别器误判的概率,而判别器则试图最小化其误判的概率。
    • L1 损失:用于衡量生成图像与真实目标图像之间的像素差异,以确保生成图像与真实图像在整体结构和细节上尽可能接近。

Pix2Pix的训练过程

  1. 数据准备:准备一组配对的训练图像,每对图像包含一个输入图像和一个对应的目标图像。
  2. 模型初始化:初始化生成器和判别器的参数。
  3. 训练步骤
    • 生成器训练:输入图像通过生成器生成伪造的目标图像,计算对抗损失和 L1 损失,反向传播以更新生成器参数。
    • 判别器训练:将真实目标图像和生成器生成的伪造图像分别输入判别器,计算判别器的损失,反向传播以更新判别器参数。
    • 以上步骤交替进行,直到模型收敛。
相关推荐
MARS_AI_3 小时前
云蝠智能 Voice Agent 落地展会邀约场景:重构会展行业的智能交互范式
人工智能·自然语言处理·重构·交互·语音识别·信息与通信
weixin_422456444 小时前
第N7周:调用Gensim库训练Word2Vec模型
人工智能·机器学习·word2vec
归去_来兮6 小时前
深度学习模型在C++平台的部署
c++·深度学习·模型部署
HuggingFace7 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台8 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍8 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_8 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
一只小灿灿9 小时前
前端计算机视觉:使用 OpenCV.js 在浏览器中实现图像处理
前端·opencv·计算机视觉
巴伦是只猫9 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明9 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法