gemini-pro-vision 看图说话

一、安装

复制代码
   pip install -U langchain-google-vertexai

二、设置访问权限

申请服务账号json格式key

三、完整代码

复制代码
import gradio as gr
import json
import base64
from pathlib import Path
import os
import time
import requests
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI
from langchain_core.output_parsers import StrOutputParser

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "xxx.json"
app = FastAPI()
app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],
        allow_credentials=True,
        allow_methods=["*"],
        allow_headers=["*"],
    )

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def generate(model, prompt, images_base64):
    llm = ChatVertexAI(model_name=model)
    # example
    message = HumanMessage(
        content=[
            {
                "type": "text",
                "text": prompt,
            },
            {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images_base64}"}},
        ]
    )
    parser = StrOutputParser()
    result = llm.invoke([message])
    parserResult = parser.invoke(result)
    return parserResult

def respond(model, image_path, prompt, chat_history):
    print(model, image_path, prompt)
    images_base64 = [encode_image(image_path)]
    bot_message = generate(model, prompt, images_base64)
    chat_history.append((prompt, bot_message))
    time.sleep(1)
    return "", chat_history

with gr.Blocks() as demo:
    gr.Image(value='xxx.png',height=30,width=70, interactive=False, show_download_button=False, show_label=False)
    gr.HTML("""<h1 align="center">图片问答</h1>""")
    
    model = gr.Textbox(value="gemini-pro-vision",label="gemini多模态模型:")
    with gr.Row():
        with gr.Column(scale=1):
            image_path = gr.Image(label="上传图片:",type="filepath", value='Picture1.png')
        with gr.Column(scale=3):
            chatbot = gr.Chatbot()
    prompt = gr.Textbox(label="用户:",value="大童在保险行业的地位如何?使用中文回答。")
    
    clear = gr.ClearButton([prompt, chatbot])
            
    prompt.submit(respond, [model, image_path, prompt, chatbot], [prompt, chatbot])

app = gr.mount_gradio_app(app, demo, path="/")

if __name__ == '__main__':
    uvicorn.run(app='web_gemini:app', host='0.0.0.0', port=8500, workers=1)

四、运行效果

相关推荐
寻星探路10 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
ValhallaCoder13 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
猫头虎13 小时前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
八零后琐话14 小时前
干货:程序员必备性能分析工具——Arthas火焰图
开发语言·python
青春不朽51215 小时前
Scrapy框架入门指南
python·scrapy
MZ_ZXD00115 小时前
springboot旅游信息管理系统-计算机毕业设计源码21675
java·c++·vue.js·spring boot·python·django·php
全栈老石16 小时前
Python 异步生存手册:给被 JS async/await 宠坏的全栈工程师
后端·python
梨落秋霜16 小时前
Python入门篇【模块/包】
python
阔皮大师17 小时前
INote轻量文本编辑器
java·javascript·python·c#