gemini-pro-vision 看图说话

一、安装

复制代码
   pip install -U langchain-google-vertexai

二、设置访问权限

申请服务账号json格式key

三、完整代码

复制代码
import gradio as gr
import json
import base64
from pathlib import Path
import os
import time
import requests
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI
from langchain_core.output_parsers import StrOutputParser

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "xxx.json"
app = FastAPI()
app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],
        allow_credentials=True,
        allow_methods=["*"],
        allow_headers=["*"],
    )

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def generate(model, prompt, images_base64):
    llm = ChatVertexAI(model_name=model)
    # example
    message = HumanMessage(
        content=[
            {
                "type": "text",
                "text": prompt,
            },
            {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images_base64}"}},
        ]
    )
    parser = StrOutputParser()
    result = llm.invoke([message])
    parserResult = parser.invoke(result)
    return parserResult

def respond(model, image_path, prompt, chat_history):
    print(model, image_path, prompt)
    images_base64 = [encode_image(image_path)]
    bot_message = generate(model, prompt, images_base64)
    chat_history.append((prompt, bot_message))
    time.sleep(1)
    return "", chat_history

with gr.Blocks() as demo:
    gr.Image(value='xxx.png',height=30,width=70, interactive=False, show_download_button=False, show_label=False)
    gr.HTML("""<h1 align="center">图片问答</h1>""")
    
    model = gr.Textbox(value="gemini-pro-vision",label="gemini多模态模型:")
    with gr.Row():
        with gr.Column(scale=1):
            image_path = gr.Image(label="上传图片:",type="filepath", value='Picture1.png')
        with gr.Column(scale=3):
            chatbot = gr.Chatbot()
    prompt = gr.Textbox(label="用户:",value="大童在保险行业的地位如何?使用中文回答。")
    
    clear = gr.ClearButton([prompt, chatbot])
            
    prompt.submit(respond, [model, image_path, prompt, chatbot], [prompt, chatbot])

app = gr.mount_gradio_app(app, demo, path="/")

if __name__ == '__main__':
    uvicorn.run(app='web_gemini:app', host='0.0.0.0', port=8500, workers=1)

四、运行效果

相关推荐
学地理的小胖砸18 分钟前
【Python 操作 MySQL 数据库】
数据库·python·mysql
安迪小宝19 分钟前
6 任务路由与负载均衡
运维·python·celery
Blossom.11821 分钟前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
lisw0533 分钟前
Python高级进阶:Vim与Vi使用指南
python·vim·excel
ayiya_Oese1 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
SoraLuna1 小时前
「Mac畅玩AIGC与多模态40」开发篇35 - 用 Python 开发服务对接 SearxNG 与本地知识库
python·macos·aigc
noravinsc2 小时前
redis是内存级缓存吗
后端·python·django
王学政22 小时前
LlamaIndex 第九篇 Indexing索引
人工智能·python
百锦再2 小时前
大数据技术的主要方向及其应用详解
大数据·linux·网络·python·django·pygame
盛夏绽放2 小时前
Python字符串常用方法详解
开发语言·python·c#