gemini-pro-vision 看图说话

一、安装

复制代码
   pip install -U langchain-google-vertexai

二、设置访问权限

申请服务账号json格式key

三、完整代码

复制代码
import gradio as gr
import json
import base64
from pathlib import Path
import os
import time
import requests
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI
from langchain_core.output_parsers import StrOutputParser

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "xxx.json"
app = FastAPI()
app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],
        allow_credentials=True,
        allow_methods=["*"],
        allow_headers=["*"],
    )

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def generate(model, prompt, images_base64):
    llm = ChatVertexAI(model_name=model)
    # example
    message = HumanMessage(
        content=[
            {
                "type": "text",
                "text": prompt,
            },
            {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images_base64}"}},
        ]
    )
    parser = StrOutputParser()
    result = llm.invoke([message])
    parserResult = parser.invoke(result)
    return parserResult

def respond(model, image_path, prompt, chat_history):
    print(model, image_path, prompt)
    images_base64 = [encode_image(image_path)]
    bot_message = generate(model, prompt, images_base64)
    chat_history.append((prompt, bot_message))
    time.sleep(1)
    return "", chat_history

with gr.Blocks() as demo:
    gr.Image(value='xxx.png',height=30,width=70, interactive=False, show_download_button=False, show_label=False)
    gr.HTML("""<h1 align="center">图片问答</h1>""")
    
    model = gr.Textbox(value="gemini-pro-vision",label="gemini多模态模型:")
    with gr.Row():
        with gr.Column(scale=1):
            image_path = gr.Image(label="上传图片:",type="filepath", value='Picture1.png')
        with gr.Column(scale=3):
            chatbot = gr.Chatbot()
    prompt = gr.Textbox(label="用户:",value="大童在保险行业的地位如何?使用中文回答。")
    
    clear = gr.ClearButton([prompt, chatbot])
            
    prompt.submit(respond, [model, image_path, prompt, chatbot], [prompt, chatbot])

app = gr.mount_gradio_app(app, demo, path="/")

if __name__ == '__main__':
    uvicorn.run(app='web_gemini:app', host='0.0.0.0', port=8500, workers=1)

四、运行效果

相关推荐
was1721 分钟前
使用 Python 脚本一键上传图片到兰空图床并自动复制链接
python·api上传·自建图床·一键脚本
好学且牛逼的马15 分钟前
从“Oak”到“虚拟线程”:JDK 1.0到25演进全记录与核心知识点详解a
java·开发语言·python
shangjian00730 分钟前
Python基础-环境安装-Anaconda配置虚拟环境
开发语言·python
codeJinger35 分钟前
【Python】函数
开发语言·python
geovindu1 小时前
python: Command Pattern
开发语言·python·命令模式
曲幽2 小时前
FastAPI实战:WebSocket长连接保持与心跳机制,从入门到填坑
javascript·python·websocket·keep-alive·fastapi·heartbeat·connection
好学且牛逼的马3 小时前
从“混沌初开”到“有序统一”:Java集合框架发展历程与核心知识点详解
前端·数据库·python
a1117763 小时前
快速制作 虚拟形象项目 MotionPNGTuber
python·live2d
一切尽在,你来3 小时前
AI大模型应用开发前置知识:Python迭代器和生成器深入详解
python·langchain·ai编程
小雨中_4 小时前
2.7 强化学习分类
人工智能·python·深度学习·机器学习·分类·数据挖掘