gemini-pro-vision 看图说话

一、安装

复制代码
   pip install -U langchain-google-vertexai

二、设置访问权限

申请服务账号json格式key

三、完整代码

复制代码
import gradio as gr
import json
import base64
from pathlib import Path
import os
import time
import requests
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI
from langchain_core.output_parsers import StrOutputParser

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "xxx.json"
app = FastAPI()
app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],
        allow_credentials=True,
        allow_methods=["*"],
        allow_headers=["*"],
    )

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def generate(model, prompt, images_base64):
    llm = ChatVertexAI(model_name=model)
    # example
    message = HumanMessage(
        content=[
            {
                "type": "text",
                "text": prompt,
            },
            {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images_base64}"}},
        ]
    )
    parser = StrOutputParser()
    result = llm.invoke([message])
    parserResult = parser.invoke(result)
    return parserResult

def respond(model, image_path, prompt, chat_history):
    print(model, image_path, prompt)
    images_base64 = [encode_image(image_path)]
    bot_message = generate(model, prompt, images_base64)
    chat_history.append((prompt, bot_message))
    time.sleep(1)
    return "", chat_history

with gr.Blocks() as demo:
    gr.Image(value='xxx.png',height=30,width=70, interactive=False, show_download_button=False, show_label=False)
    gr.HTML("""<h1 align="center">图片问答</h1>""")
    
    model = gr.Textbox(value="gemini-pro-vision",label="gemini多模态模型:")
    with gr.Row():
        with gr.Column(scale=1):
            image_path = gr.Image(label="上传图片:",type="filepath", value='Picture1.png')
        with gr.Column(scale=3):
            chatbot = gr.Chatbot()
    prompt = gr.Textbox(label="用户:",value="大童在保险行业的地位如何?使用中文回答。")
    
    clear = gr.ClearButton([prompt, chatbot])
            
    prompt.submit(respond, [model, image_path, prompt, chatbot], [prompt, chatbot])

app = gr.mount_gradio_app(app, demo, path="/")

if __name__ == '__main__':
    uvicorn.run(app='web_gemini:app', host='0.0.0.0', port=8500, workers=1)

四、运行效果

相关推荐
weixin_4624462316 分钟前
使用 Python 测试 Mermaid 与 Graphviz 图表生成(支持中文)
python·mermaid·graphviz
JOBkiller12317 分钟前
钢绞线缺陷检测与识别_Cascade-Mask-RCNN_RegNetX模型训练与应用实战
python
nvd1124 分钟前
深入 ReAct Agent 的灵魂拷问:从幻觉到精准执行的调试实录
python·langchain
Ulyanov24 分钟前
战场地形生成与多源数据集成
开发语言·python·算法·tkinter·pyside·pyvista·gui开发
love530love25 分钟前
告别环境崩溃:ONNX 与 Protobuf 版本兼容性指南
人工智能·windows·python·onnx·stablediffusion·comfyui·protobuf
ID_180079054731 小时前
日本乐天商品详情API接口的请求构造与参数说明
开发语言·python·pandas
多米Domi0111 小时前
0x3f 第35天 电脑硬盘坏了 +二叉树直径,将有序数组转换为二叉搜索树
java·数据结构·python·算法·leetcode·链表
UR的出不克2 小时前
使用 Python 爬取 Bilibili 弹幕数据并导出 Excel
java·python·excel
Arms2062 小时前
python时区库学习
开发语言·python·学习
与光同尘 大道至简3 小时前
ESP32 小智 AI 机器人入门教程从原理到实现(自己云端部署)
人工智能·python·单片机·机器人·github·人机交互·visual studio