gemini-pro-vision 看图说话

一、安装

复制代码
   pip install -U langchain-google-vertexai

二、设置访问权限

申请服务账号json格式key

三、完整代码

复制代码
import gradio as gr
import json
import base64
from pathlib import Path
import os
import time
import requests
from fastapi import FastAPI, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI
from langchain_core.output_parsers import StrOutputParser

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "xxx.json"
app = FastAPI()
app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],
        allow_credentials=True,
        allow_methods=["*"],
        allow_headers=["*"],
    )

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def generate(model, prompt, images_base64):
    llm = ChatVertexAI(model_name=model)
    # example
    message = HumanMessage(
        content=[
            {
                "type": "text",
                "text": prompt,
            },
            {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{images_base64}"}},
        ]
    )
    parser = StrOutputParser()
    result = llm.invoke([message])
    parserResult = parser.invoke(result)
    return parserResult

def respond(model, image_path, prompt, chat_history):
    print(model, image_path, prompt)
    images_base64 = [encode_image(image_path)]
    bot_message = generate(model, prompt, images_base64)
    chat_history.append((prompt, bot_message))
    time.sleep(1)
    return "", chat_history

with gr.Blocks() as demo:
    gr.Image(value='xxx.png',height=30,width=70, interactive=False, show_download_button=False, show_label=False)
    gr.HTML("""<h1 align="center">图片问答</h1>""")
    
    model = gr.Textbox(value="gemini-pro-vision",label="gemini多模态模型:")
    with gr.Row():
        with gr.Column(scale=1):
            image_path = gr.Image(label="上传图片:",type="filepath", value='Picture1.png')
        with gr.Column(scale=3):
            chatbot = gr.Chatbot()
    prompt = gr.Textbox(label="用户:",value="大童在保险行业的地位如何?使用中文回答。")
    
    clear = gr.ClearButton([prompt, chatbot])
            
    prompt.submit(respond, [model, image_path, prompt, chatbot], [prompt, chatbot])

app = gr.mount_gradio_app(app, demo, path="/")

if __name__ == '__main__':
    uvicorn.run(app='web_gemini:app', host='0.0.0.0', port=8500, workers=1)

四、运行效果

相关推荐
闲人编程1 小时前
Python在网络安全中的应用:编写一个简单的端口扫描器
网络·python·web安全·硬件·端口·codecapsule·扫描器
Mr_Xuhhh4 小时前
GUI自动化测试--自动化测试的意义和应用场景
python·集成测试
2301_764441334 小时前
水星热演化核幔耦合数值模拟
python·算法·数学建模
循环过三天4 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
Q_Q5110082854 小时前
python+django/flask的眼科患者随访管理系统 AI智能模型
spring boot·python·django·flask·node.js·php
SunnyDays10116 小时前
如何使用Python高效转换Excel到HTML
python·excel转html
Q_Q5110082856 小时前
python+django/flask的在线学习系统的设计与实现 积分兑换礼物
spring boot·python·django·flask·node.js·php
Q_Q5110082857 小时前
python+django/flask的车辆尾气检测排放系统-可视化大屏展示
spring boot·python·django·flask·node.js·php
汤姆yu7 小时前
2026版基于python大数据的旅游可视化及推荐系统
python·旅游·大数据旅游
angleoldhen7 小时前
简单的智能数据分析程序
python·信息可视化·数据分析